Skip to main content

An Overview of the Outstanding Issues in the Risk Assessment of Methylene Chloride

  • Chapter
Oncogene and Transgenics Correlates of Cancer Risk Assessments

Part of the book series: NATO ASI Series ((NSSA,volume 232))

  • 71 Accesses

Abstract

Methylene chloride is a liver and lung carcinogen in male and female B6C3F1 mice. Accurate assessment of human cancer risk for this chemical requires mechanistic knowledge of both target tissue dosimetry (pharmacokinetics) and of the tissue responses culminating in tumor development (pharmacodynamics). A major step in this direction was taken by Andersen et al. (Toxicol. Appl. Pharmacol., 87:185, 1987) who used a physiologically based pharmacokinetic (PBPK) model to define target tissue doses of methylene chloride and its metabolites, produced by either cytochrome P-450 or by glutathione (GSH) conjugation. With this approach they found that methylene chloride metabolism by GSH conjugation correlated better with observed tumor outcome than did metabolism via cytochrome P-450. The PBPK model was scaled to humans and used to predict human metabolism of methylene chloride by the GSH pathway. When these calculated dose surrogates were used as input to a linearized multistage (LMS) model, a human cancer risk of 3.7 X 10-8, for lifetime exposure at 1 mg/m3 was predicted, more than two orders of magnitude lower than the risk estimated when bioassay exposure concentrations were used as input to the LMS for high to low dose extrapolation, and a body surface area correction factor was used for scaling from mice to humans. This report reviews the essential features of the Andersen et al. PBPK assisted risk assessment and considers how on-going developments in biologically based risk assessment should lead to further refinement of the human health risk assessment for methylene chloride.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. C. Ramsey and M. E. Andersen, 1984, A physiologically based description of the inhalation pharmacokinetics of styrene in rats and humans, Toxicol. Appl. Pharmacol., 73:159.

    Article  PubMed  CAS  Google Scholar 

  2. J. M. Gearhart, G. W. Jepson, H. J. Clewell, III, M. E. Andersen and R. B. Conolly, 1990, A physiologically-based model for in vivo inhibition of acetylcholinesterase by diisopropylfluorophosphate, Toxicol. Appl. Pharmacol., 106:295.

    Article  PubMed  CAS  Google Scholar 

  3. K. B. Bischoff, R. L. Dedrick, D. S. Zaharko and J. A. Longstreth, Methotrexate pharmacokinetics, J. Pharm. Sci., 60:1128.

    Google Scholar 

  4. P. F. Morrison, R. L. Dedrick and R. J. Lutz, 1971, Methotrexate: Pharmacokinetics and assessment of toxicity, in: “Pharmacokinetics and Risk Assessment,” 8:410, Natl. Academy Press, Washington, D.C.

    Google Scholar 

  5. H. W. Leung, D. J. Paustenbach, F. J. Murray and M. E. Andersen, 1990, A physiological pharmacokinetic description of the tissue disposition and enzyme inducing properties of 2,3,7,8,-tetrachlorodibenzo-p-dioxin in the rat, Toxicol. Appl. Pharmacol., 103:399.

    Article  PubMed  CAS  Google Scholar 

  6. H. W. Leung, A. P. Poland, D. J. Paustenbach and M. E. Andersen, 1990, Dose-dependent pharmacokinetics of [125I]-2-iodo-3,7,8-trichlorodibenzo-p-dioxin in mice: Analysis with a physiological modeling approach, Toxicol. Appl. Pharmacol., 103:411.

    Article  PubMed  CAS  Google Scholar 

  7. H. B. Matthews and R. L. Dedrick, 1984, Pharmacokinetics of PCBs, Annu. Rev. Pharmacol. Toxicol., 24:85.

    Article  PubMed  CAS  Google Scholar 

  8. H. J. Clewell, III and M. E. Andersen, 1987, Dose, species, and route extrapolations with a physiologically based model, in: “Drinking Water and Health,” 8:159–182.

    Google Scholar 

  9. M. L. Gargas and M. E. Andersen, 1988, Physiologically based approaches for examining the pharmacokinetics of inhaled vapors, in: “Toxicology of the Lung,” J. Crapo, E. Masaro and D. Carpenter, eds., Raven Press, pp. 449–476.

    Google Scholar 

  10. R. W. D’Souza and M. E. Andersen, 1988, Physiologically-based pharmacokinetic model for vinylidene chloride, Toxicol. Appl. Pharmacol., 95:230.

    Article  PubMed  Google Scholar 

  11. R. H. Reitz, A. L. Mendrala, R. A. Corley, J. F. Quast, M. L. Gargas, M. E. Andersen, D. A. Staats and R. B. Conolly, 1990, Estimating the risk of liver cancer associated with human exposures to chloroform using physiologically based pharmacokinetic modeling, Toxicol. Appl. Pharmacol., 105:443.

    Article  PubMed  CAS  Google Scholar 

  12. S. H. Moolgavkar and D. J. Venzon, 1979, Two-event models for carcinogenesis: Incidence curves for childhood and adult tumors, Math. Biosci., 47:55.

    Article  Google Scholar 

  13. S. H. Moolgavkar and A. G. Knudson, 1981, Mutation and cancer: A model for human carcinogenesis, J. Natl. Cancer Inst., 66:1037.

    PubMed  CAS  Google Scholar 

  14. S. H. Moolgavkar, N. E. Day and R. G. Stevens, 1980, Two-stage model for carcinogenesis: Epidemiology of breast cancer in females, J. Natl. Cancer Inst., 65:559.

    PubMed  CAS  Google Scholar 

  15. R. B. Conolly, R. H. Reitz, H. J. Clewell, III and M. E. Andersen, 1988, Pharmacokinetics, biochemical mechanism and mutation accumulation: A comprehensive model of chemical carcinogenesis. Toxicol. Lett. 43:189.

    Article  PubMed  CAS  Google Scholar 

  16. R. B. Conolly, R. H. Reitz, H. J. Clewell, III and Andersen, M.E., 1988, Biologically-structured models and computer simulation: Application to chemical carcinogenesis, Comments on Toxicology 2:305.

    CAS  Google Scholar 

  17. National Toxicology Program (1985) NTP Technical Report on the toxicology and carcinogenesis studies of dichloromethane in F-344 rats and B6C3F1 mice (inhalation studies). NTP TR No. 306.

    Google Scholar 

  18. V. L. Kubic, M. W. Anders, R. R. Engel, C. H. Barlow and W. S. Caughey, 1974, Metabolism of dihalomethanes to carbon monoxide, Drug Metab. Dispos., 2:53.

    PubMed  CAS  Google Scholar 

  19. M. L. Gargas, M. E. Andersen and H. J. Clewell, III, 1986, Metabolism of inhaled dihalomethanes: Differentiation of kinetic constants for two independent pathways. Toxicol. Appl. Pharmacol., 87:211.

    Article  Google Scholar 

  20. R. H. Reitz, F. A. Smith and M. E. Andersen, 1986, In vivo metabolism of 14Cmethylene chloride, Toxicologist, 6:260.

    Google Scholar 

  21. M. E. Andersen, H. J. Clewell, III, M. L. Gargas, F. A. Smith and R. H. Reitz, 1987, Physiologically based pharmacokinetics and the risk assessment process for methylene chloride, Toxicol. Appl. Pharmacol., 87:185.

    Article  PubMed  CAS  Google Scholar 

  22. R. H. Reitz, A. L. Mendrala, C. N. Park, M. E. Andersen and F. P. Guengerich, 1988, Incorporation of in vitro enzyme data into the physiologically-based pharmacokinetic (PB-PK) model for methylene chloride: Implications for risk assessment, Toxicol. Lett., 43:97.

    Article  PubMed  CAS  Google Scholar 

  23. W. O. Caster, J. Poncelet, A. B. Simon and W. D. Armstrong, 1956, Tissue weights of the rat. I. Normal values determined by dissection and chemical methods, Proc. Soc. Exp. Biol. Med., 91:122.

    PubMed  CAS  Google Scholar 

  24. International Commission on Radiation Protection, 1975, Report of the task group on reference man. ICRP Publication No 23, Pergamon, NY.

    Google Scholar 

  25. A. Sato and T. Nakajima, 1979, Partition coefficients of some aromatic hydrocarbons and ketones in water, blood and oil, Br. J. Ind. Med., 36:31.

    Google Scholar 

  26. M. L. Gargas, R. J. Burgess, D. E. Voisard, G. H. Cason and M. E. Andersen, 1989, Partition coefficients of low molecular weight volatile liquids and tissues, Toxicol. Appl. Pharmacol., 98:87.

    Article  PubMed  CAS  Google Scholar 

  27. J. Lorenz, H. R. Glatt, R. Fleischmann, R. Ferlinz and F. Oesch, 1984, Drug metabolism in man and its relationship to that in three rodent species. Monooxygenase, epoxide hydrolase and GSH S-transferase activities in subcellular fractions of lung and liver. Biochem. Med., 32:43.

    Article  PubMed  CAS  Google Scholar 

  28. M. E. Andersen, H. J. Clewell, III, M. L. Gargas, M. J. MacNaughton, R. H. Reitz, R. Nolan and M. McKenna, 1991, Physiologically based pharmacokinetic modeling with dichloromethane, its metabolite carbon monoxide and blood carboxyhaemoglobin in rats and humans, Toxicol. Appl. Pharmacol., 108:14.

    Article  PubMed  CAS  Google Scholar 

  29. Meyer, D.J., Coles, B., Pemble, S.E., Gilmore, K.S., Fraser, G.M., and Ketterer, B. 1991. Theta, a new class of glutathione transferases purified from rat and man, Biochem. J., 274:409.

    PubMed  CAS  Google Scholar 

  30. M. Casanova, H. d’Heck and D. F. Deyo, 1991, Dichloromethane: Metabolism to formaldehyde and formation of DNA-protein crosslinks in mice and hamsters, Toxicologist 11:180.

    Google Scholar 

  31. D. V. Singh, H. L. Spitzer and P. D. White, 1985, Addendum to the health risk assessment for dichloromethane. Updated carcinogenicity assessment for dichloromethane, EPA/600/8–82/004F.

    Google Scholar 

  32. United States Environmental Protection Agency, (1987), Update to the health assessment document and addendum for dichloromethane: pharmacokientics, mechanism of action and epidemiology. EPA 600/8–87/030A.

    Google Scholar 

  33. W. D. Kerns, K. L. Pavkov, D. J. Donofrio, E. J. Gralla and J. A. Swenberg, 1983, Carcinogenicity of formaldehyde in rats and mice after long-term inhalation exposure, Cancer Res., 43:4382.

    PubMed  CAS  Google Scholar 

  34. T. M. Monticello, 1990, Formaldehyde-induced pathology and cell proliferation, Ph.D. Dissertation, Duke University, Durham, NC.

    Google Scholar 

  35. T. M. Monticello, F. J. Miller and K. T. Morgan, 1991, Regional increases in rat nasal respiratory epithelial cell proliferation following acute and subacute inhalation of formaldehyde, Toxicol. Appl. Pharmacol., 111:409.

    Article  PubMed  CAS  Google Scholar 

  36. K. T. Morgan and T. M. Monticello, 1990, Formaldehyde toxicity: Respiratory epithelial cell injury and repair, in: “Biology, Toxicology and Carcinogenesis of Respiratory Epithelium,” D. G. Thomassen and P. Nettesheim, eds., Hemisphere Publishing Inc., New York, pp. 155–171.

    Google Scholar 

  37. T. Green, 1989, A biological data base for methylene chloride risk assessment, in: “Biologically Based Models for Cancer Risk Assessment,” C. C. Travis, ed., NATO ASI Series, Series A: Life Sciences, V. 159, Plenum Press, pp. 289–300.

    Google Scholar 

  38. D. H. Kim and F. P. Guengerich, 1990, Formation of the DNA adduct S-[2-(N7guanyl)ethyl]glutathione from ethylene dibromide: Effects of modulation of glutathione and glutathione S-transferase levels and lack of a role for sulfation, Carcinogenesis, 11:419.

    Article  PubMed  CAS  Google Scholar 

  39. M. L. Gargas and M. E. Andersen, 1992, Kinetic constants for biotransformation reactions of volatile organic chemicals (VOCs): In vivo/in vitro comparisons, The Toxicologist, 12:000.

    Google Scholar 

  40. R. B. Conolly, T. M. Monticello, K. T. Morgan, H. J. Clewell, III, and M. E. Andersen, 1991, Strategy for biologically-based risk assessment of inhaled formaldehyde, Comments on Toxicology, 4:269.

    Google Scholar 

  41. C. J. Portier and N. L. Kaplan, 1989, Variability of safe dose estimates when using complicated models of the carcinogenic process, Fundam. Appl. Toxicol., 13:533.

    Article  PubMed  CAS  Google Scholar 

  42. F. Y. Bois, L. Zeise and T. N. Tozer, 1990, Precision and sensitivity of pharmacokinetic models for cancer risk assessment: Tetrachloroethylene in mice, rats, and humans, Toxicol. Appl. Pharmacol., 102:300.

    Article  PubMed  CAS  Google Scholar 

  43. F. Y. Bois, T. J. Woodruff and R. C. Spear, 1991, Comparison of three physiologically based pharmacokinetic models of benzene disposition, Toxicol. Appl. Pharmacol., 110:79.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Conolly, R.B., Krishnan, K., Andersen, M.E. (1992). An Overview of the Outstanding Issues in the Risk Assessment of Methylene Chloride. In: Zervos, C. (eds) Oncogene and Transgenics Correlates of Cancer Risk Assessments. NATO ASI Series, vol 232. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3056-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3056-5_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6333-0

  • Online ISBN: 978-1-4615-3056-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics