Skip to main content

Nematode Acetylcholinesterases: Several Genes and Molecular Forms of Their Products

  • Chapter
Multidisciplinary Approaches to Cholinesterase Functions

Abstract

In vertebrates, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are polymorphic enzymes presenting both globular and asymmetric forms1. In invertebrates, only AChE has been characterized so far that presents a reduced molecular diversity. In insects for example the major molecular form of AChE is an amphiphilic dimeric form2,3 attached to the membrane through a glycolipid covalently linked at the C-terminus of each catalytic subunit4,5,6. This AChE has a substrate specificity intermediate to those of mammalian AChE and BChE3,4. A glycolipid-anchored 7.5S form has also been observed in the trematode Schistosoma mansoni 7. Asymmetric forms have never been convincingly reported in invertebrates except in the more evolved animals such as Amphioxius 8. In the latter case also there is no BChE but AChE presents catalytic properties intermediate to those of vertebrate AChE and BChE8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Massoulié and S. Bon, The molecular forms of cholinesterases in vertebrates, Ann. Rev. Neurosci. 5:57 (1982).

    Article  PubMed  Google Scholar 

  2. J.P. Toutant, M. Arpagaus and D. Fournier, Native molecular forms of head acetylcholinesterase from adult Drosophila melanogaster: Quaternary structure and hydrophobic character, J. Neurochem. 50:209 (1988).

    Article  PubMed  CAS  Google Scholar 

  3. J.P. Toutant, Insect acetylcholinesterase. Catalytic properties, tissue distribution and molecular forms, Progr. Neurobiol. 32:423 (1989).

    Article  CAS  Google Scholar 

  4. A.L. Gnagey, M. Forte and T.L. Rosenberry, Isolation and characterization of acetylcholinesterase from Drosophila, J. Biol. Chem. 262:13290 (1987).

    PubMed  CAS  Google Scholar 

  5. D. Fournier, J.B. Bergé, M.L. Cardoso de Almeida and C. Bordier, Acetylcholinesterase from Musca domestica and Drosophila melanogaster are linked to membranes by a glycophospholipid anchor sensitive to an endogenous phospholipase, J. Neurochem. 50:1158 (1988).

    Article  PubMed  CAS  Google Scholar 

  6. R. Haas, T.L. Marshall and T.L. Rosenberry, Drosophila acetylcholinesterase demonstration of a glycoinositol anchor and an endogenous proteolytic cleavage, Biochemistry 27:6453 (1988).

    Article  PubMed  CAS  Google Scholar 

  7. B. Espinosa, R. Tarrab-Hazdai, I. Silman and R. Amon, Acetylcholinesterase in Schistosoma mansoni is anchored to the membrane via covalently attached phosphatidylinositol, Mol. Biochem. Parasitol. 29:171 (1988).

    Article  Google Scholar 

  8. L. Pezzementi, M. Sanders, T. Jenkins, D. Holliman, J.P. Toutant and R. Bradley, Structure and function of cholinesterase from Amphioxus,in: “Cholinesterases”, J. Massoulié et al., eds. ACS, Washington (1991).

    Google Scholar 

  9. C.D. Johnson, J.G. Duckett, J.G. Culotti, R.K. Herman, P.M. Meneely and R.L. Russell, An acetylcholinesterase-deficient mutant of the nematode Caenorhabditis elegans,Genetics 97:261 (1981).

    PubMed  CAS  Google Scholar 

  10. J.G. Culotti, G. Von Ehrenstein, M.R. Culotti, and R.L. Russell, A second class of acetylcholinesterase-deficient mutants of the nematode Caenorhabditis elegans, Genetics 97:281 (1981).

    PubMed  CAS  Google Scholar 

  11. C.D. Johnson, J.R. Rand, R.K. Herman, B.D. Stern, and R.L. Russell, The acetylcholinesterase genes of C. elegans: identification of a third gene (ace-3) and mosaic mapping of a synthetic lethal phenotype, Neuron 1:165 (1988).

    Article  PubMed  CAS  Google Scholar 

  12. M. Arpagaus and J.P. Toutant, Polymorphism of acetylcholinesterase in adult Pieris brassicae heads. Evidence for detergent-insensitive and Triton X-100-interacting forms, Neurochem. Int. 7: 793 (1985).

    Article  PubMed  CAS  Google Scholar 

  13. T.L. Rosenberry, J.P. Toutant, R. Haas and W.L. Roberts, Identification and analysis of glycoinositol phospholipid anchors in membrane proteins, Meth. Cell Biol. 32: 231 (1989)

    Article  CAS  Google Scholar 

  14. M. Vigny, S. Bon, J. Massoulié and V. Gisiger, The subunit structure of mammalian acetylcholinesterase: catalytic subunits, dissociating effect of proteolysis and disulphide reduction on the polymeric forms, J. Neurochem. 33:559 (1979).

    Article  PubMed  CAS  Google Scholar 

  15. H. Heider and U. Brodbeck, Monomerization of tetrameric bovine caudate nucleus acetylcholinesterase. Implications for hydrophobic assembly and membrane anchor attachment site, Biochem. J. 281:279 (1992).

    PubMed  CAS  Google Scholar 

  16. O. Lockridge, H.W. Eckerson and B.N. La Du, Interchain disulfide bonds and subunit organization in human cholinesterase, J. Biol. Chem. 254:8324 (1979).

    PubMed  CAS  Google Scholar 

  17. C.D. Johnson, and R.L. Russell, Multiple molecular forms of acetylcholinesterase in the nematode Caenorhabditis elegans, J. Neurochem. 41:30 (1983).

    Article  PubMed  CAS  Google Scholar 

  18. S. Stieger, U. Brodbeck and V. Witzemann, Inactive monomeric acetylcholinesterase in the low-salt-soluble extract of the electric organ from Torpedo marmorata,J. Neurochem. 49:460 (1987).

    Article  PubMed  CAS  Google Scholar 

  19. A. Coulson, Y. Kosono, B. Lutterbach, R. Shownkeen, J. Sulston and R. Waterston, YACs and the C. elegans genome, BioEssays 13:413 (1991).

    Article  PubMed  CAS  Google Scholar 

  20. D.L. Kolson and R.L. Russell, A novel class of acetylcholinesterase, revealed by mutations, in the nematode Caenorhabditis elegans,J. Neurogenet. 2:93 (1985).

    Article  PubMed  CAS  Google Scholar 

  21. N.C. Inestrosa, W.L. Roberts, T.L. Marshall and T.L. Rosenberry, Acetylcholinesterase from bovine caudate nucleus is attached to membranes by a novel subunit distinct from those of acetylcholinesterase in other tissues, J. Biol. Chem. 262:4441 (1987).

    PubMed  CAS  Google Scholar 

  22. S. Bon, J.P. Toutant, K. Méflah and J. Massoulié, Amphiphilic and nonamphiphilic forms of Torpedo cholinesterases: II. Electrophoretic variants and phosphatidylinositol phospholipase C-sensitive and -insensitive forms, J. Neurochem. 51:786 (1988).

    Article  PubMed  CAS  Google Scholar 

  23. I. Silman and A.H. Futerman, Modes of attachment of acetylcholinesterase to the surface membrane, Eur. J. Biochem. 170:11 (1987).

    Article  PubMed  CAS  Google Scholar 

  24. J.L. Sikorav, N. Duval, A. Anselmet, S. Bon, E. Krejci, C. Legay, M. Osterlund, B. Reimund and J. Massoulié, Complex alternative splicing of acetylcholinesterase transcripts in Torpedo electric organ; primary structure of the precursor of the glycolipidanchored dimeric form, EMBO J. 7:2983 (1988).

    PubMed  CAS  Google Scholar 

  25. Y. Li, S. Camp, T.L. Rachinsky, D. Getman and P. Taylor, Gene structure of mammalian acetylcholinesterase. Alternative exons dictate tissue-specific expression, J. Biol. Chem. 266:23083 (1991).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arpagaus, M. et al. (1992). Nematode Acetylcholinesterases: Several Genes and Molecular Forms of Their Products. In: Shafferman, A., Velan, B. (eds) Multidisciplinary Approaches to Cholinesterase Functions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3046-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3046-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6328-6

  • Online ISBN: 978-1-4615-3046-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics