Skip to main content

Substrate-Selective Inhibition and Peripheral Site Labeling of Acetylcholinesterase by Platinum(Terpyridine)Chloride

  • Chapter
Multidisciplinary Approaches to Cholinesterase Functions

Abstract

Acetylcholinesterase (AChE) catalyzes the hydrolysis of its physiological substrate acetylcholine as well as of a number of other acetic acid esters. A key feature of AChE is its speed in cleaving substrates (Rosenberry, 1975a). The second order rate constant for acetylcholine hydrolysis (kcat/Kapp = 2 × 108 M-1s-1) approaches the value expected for a diffusion-controlled reaction. The turnover rate for acetylcholine (kcat = 2 x 104 s-1) is at the upper limit of reactions catalyzed by general acid-base catalysis. Quinn (1987) has noted that an enzyme with such a high catalytic efficiency is likely to have evolved to a point where the free energies of successive transition states are nearly matched and comparable to the diffusional barrier for substrate binding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebersold, R., 1989, “A Practical Guide to Protein and Peptide Purification for Microsequencing” (Matsudaira, P.T., ed.), Academic Press, San Diego, CA.

    Google Scholar 

  • Fischer, W.H., Karr, D., Jackson, B., Park, M., and Vale, W., 1991, Microsequence analysis of proteins purified by gel electrophoresis, Methods Neurosci. 6: 69–84.

    CAS  Google Scholar 

  • March, S.C., Parikh, I., and Cuatrecasas, P., 1974, A simplified method for cyanogen bromide activation of agarose for affinity chromatography, Analyt. Biochem. 60: 149–152.

    Article  PubMed  CAS  Google Scholar 

  • Nolte, H.J., Rosenberry, T.L., and Neumann, E., 1980, Effective charge on acetyl-cholinesterase active sites determined from the ionic strength dependence of association rate constants with cationic ligands, Biochemistry 19: 3705–3711.

    Article  PubMed  CAS  Google Scholar 

  • Quinn, D.M., 1987, Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states, Chem. Rev. 87: 955–979.

    Article  CAS  Google Scholar 

  • Ratilla, E.M.A., Brothers, H.M., and Kostic, N.M., 1987, A transition-metal chromophore as a new, sensitive spectroscopic tag for proteins. Selective covalent labeling of histidine residues in cytochromes c with Chloro(2,2’:6’,2″terpyridine)platinum(II) chloride, J. Am. Chem. Soc. 109: 4592–4599.

    Article  CAS  Google Scholar 

  • Rosenberry, T.L., 1975a, Acetylcholinesterase, Adv. Enzymol. Relat. Areas Mol. Biol. 43: 103–218.

    CAS  Google Scholar 

  • Rosenberry, T.L., 1975b, Catalysis by acetylcholinesterase. Evidence that the rate-limiting step for acylation with certain substrates precedes general acid-base catalysis, Proc. Nat. Acad. Sci. USA 72: 3834–3838.

    Article  CAS  Google Scholar 

  • Rosenberry, T.L., and Scoggin, D.M., 1984, Structure of human erythrocyte acetyl-cholinesterase. Characterization of intersubunit disulfide bonding and detergent interaction, J. Biol. Chem. 259: 5643–5652.

    PubMed  CAS  Google Scholar 

  • Sharp, T. R. and Rosenberry, T.L., 1982, A pseudo-first order kinetic approach to measurement of acetylcholine hydrolysis by acetylcholinesterase, J. Biochem. Biophys. Meths. 6: 159–172.

    Article  CAS  Google Scholar 

  • Soreq, H., Ben-Aziz, R., Prody, C.A., Seidman, S., Gnatt, A., Neville, L., LiemanHurwitz, J., Lev-Lehman, E., Ginzberg, D., Lapidot-Lifson, Y., and Zakut, H., 1990, Molecular cloning and construction of the coding region for human acetylcholinesterase reveals a G+C-rich attenuating structure, Proc. Natl. Acad. Sci., USA 87: 9688–9692.

    Article  PubMed  CAS  Google Scholar 

  • Sussman, J.L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L., and Silman, I., 1991, Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein, Science 253: 872–879.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, P., and Lappi, S., 1975, Interaction of fluorescence probes with acetylcholinesterase, The site and specificity of propidium binding, Biochemistry 14: 1989–1997.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Haas, R., Adams, E.W., Rosenberry, M.A., Rosenberry, T.L. (1992). Substrate-Selective Inhibition and Peripheral Site Labeling of Acetylcholinesterase by Platinum(Terpyridine)Chloride. In: Shafferman, A., Velan, B. (eds) Multidisciplinary Approaches to Cholinesterase Functions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3046-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3046-6_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6328-6

  • Online ISBN: 978-1-4615-3046-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics