Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 326))

Abstract

The treatment and therapy of many acute and chronic illnesses have largely involved the administration of drugs via the standard delivery systems, e.g. oral, parenteral, intra-muscular, and intravenous administration. These methods of administering a drug usually result in an immediate bio-availability of the drug. Anti-tumor agents require a high concentration to achieve a therapeutically relevant dose in the tumor cells. However, the amount of the drug required usually proves to be toxic to normal tissue. The need for an effective drug delivery system is underscored by the constraints associated with the collateral effects of using drugs at high doses. Many approaches to the problem of controlled and targeted drug delivery such as a polymeric sustained release system, liposomal drug carriers, and antibody drug carriers have been proposed and utilized during the last decade.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.K. Gupta, Drug targeting in cancer chemotherapy: a clinical perspective. J. Pharm. Sci. 79:949 (1990).

    Article  PubMed  CAS  Google Scholar 

  2. J.R. DeLoach and U. Sprandel, Red Blood Cells as Carriers for Drug. in Bibliotheca Haematologica, vol.51 A.Hassig, Bern (1985).

    Google Scholar 

  3. C. Ropars, M. Chassaigne and C. Nicolau, Resealed Erythrocytes as Carriers and Bioreactors. in Advances in the biosciences, vol.67 Pergamon Press, Oxford (1987).

    Google Scholar 

  4. J.R. DeLoach, C.T. Tangner and C. Barton, Hepatic pharmacokinetics of glutaraldehyde treated metotrexate-loaded carrier erythrocytes in dog. Res. Exp. Med. 183:167 (1983).

    Article  CAS  Google Scholar 

  5. E. Zocchi, M. Tonetti, C. Polvani, et al. In vivo liver and lung tergeting of adriamycin encapsulated in glutaraldehyde-treated murine erythrocytes. Biotechnol. Appl.Biochem. 10:555 (1988).

    PubMed  CAS  Google Scholar 

  6. E. Zocchi, M. Tonetti, C. Polvani, L. Guida, U. Benatti and A. De Flora. Encapsulation of doxorubicin in liver-target erythrocytes increases the therapeutic index of the drug in a murine metastatic model. Proc. Natl. Acad, Sci. USA 86:2040 (1989).

    Article  CAS  Google Scholar 

  7. M. Tonetti, B. Astroff, W. Satterfield, A. De Flora, U. Benatti and J.R. DeLoach, Pharmacochinetic properties of doxorubicin encapsulated in glutaraldehyde-treated canine erythrocytes. Am. J. Vet. Res. 52:1630 (1991).

    PubMed  CAS  Google Scholar 

  8. V.R. Muzykantov, D.V. Sakharov, M.D. Smirnov, G.P. Samokhin and V.N. Smirnov, Immunotargeting of erythrocytes bound streptokinase provides local lysis of a fribin clot. Biochim. Biophys. Acta. 884:355 (1986).

    Article  CAS  Google Scholar 

  9. P.N. Rao, T.R. Walsh, L. Makowka, T. Liu, A.J. Demetris, R.S. Ribin, J.T. Snyder, H.J. Mishinger and T.E. Starzl, Inhibition of free radical generation and improved survival by protection of hepatic microvascular endothelium by targeted erythrocytes in orthotopic rat liver transplantation. Transplantation 49:1055 (1990).

    Article  PubMed  CAS  Google Scholar 

  10. J.M. Jancik and R. Schauer, Sequestration of neuroaminidase-treated erythrocytes. Cell Tissue Res. 186:209 (1978).

    Article  Google Scholar 

  11. W.E. Lynch, G.P. Sartiano and A. Ghaffar Erythrocytes as carriers of chemotherapic agent for targeting the reticuloendothelial system. Am.J.Haematol. 9:249 (1980).

    Article  CAS  Google Scholar 

  12. J.R. DeLoach and R. Droleskey, Survival of murine carrier erythrocytes injected via the peritoneum Comp. Biochem. Physiol. 84A:447 (1986).

    Article  Google Scholar 

  13. J.R DeLoach and D.E. Cornier, Subcutaneus administration of carrier erythrocytes: slow release of entrapped agent Biotech.Appl.Biotechnol. 10:359 (1988).

    CAS  Google Scholar 

  14. L. Chiarantini, J. Johnson and J.R. DeLoach, Optimized recirculation survival of mouse carrier erythrocytes Blood Cells 17:607 (1991).

    PubMed  CAS  Google Scholar 

  15. T. Idziorek and D. Klatzmann, Functional expression of CD4 protein after cross-linking to red blood cell with a bifunctional reagent. Biochim.Biophys.Acta 1062:39 (1991).

    Article  PubMed  CAS  Google Scholar 

  16. T. Suzuki and G.L. Dale, Biotinylated erythrocytes: in vivo survival and in vivo recovery. Blood 70:791 (1987).

    PubMed  CAS  Google Scholar 

  17. E.R. Gold and H.H. Fudenberg, Chromic chloride: a coupling reagent for passive hemagglutination reactions. J. Immunol. 99:859 (1967).

    PubMed  CAS  Google Scholar 

  18. S. Gillis and K.A. Smith, Long term colture of tumor-specific cytotoxic T-cells. Nature 268:154 (1977).

    Article  PubMed  CAS  Google Scholar 

  19. J.W. Goding, The chromic chloride method of coupling antigens to erythrocytes: definition of some important parameters. J.Immunol.Methods 10:61 (1976).

    Article  PubMed  CAS  Google Scholar 

  20. P.L. Mollison and N. Veall,-The use of the isotope 51Cr as a label for red cells. Br. J. Hematol. 1:62 (1955).

    Article  CAS  Google Scholar 

  21. T.D. Allen, in Scanning electron microscopy of cells in culture (SEM, Inc., Ed.) Vol.IV, pp.1963, AMF O’Hare, Chicago (1983).

    Google Scholar 

  22. J.R. DeLoach, R. Droleskey and K. Andrews. Encapsulation by hypotonic dialysism in human erythrocytes: a diffusion or endocytosis process. Biotech. Appl. Biochem. 13:72 (1991).

    CAS  Google Scholar 

  23. J.F. Bach, J. Dormont, M. Dardenne and H. Balner, In vitro rosette inhibition by antihuman antylymphocyte serum. Correlation with skin graft prolongation in subhuman primates. Transplantation 8:265 (1969).

    Article  PubMed  CAS  Google Scholar 

  24. P. Brain, J. Gordon and W. Willets, Rosette formation by peripheral lymphocytes. Clin.Exp.Immunol. 6:681 (1970).

    PubMed  CAS  Google Scholar 

  25. W.M. MaKgoka, S. Shaw, E. Gugel and M.E. Sanders, Human T-cell rosetting is mediated by LFA-3 on autologous erythrocytes. J. Immunol. 138:3587 (1987).

    Google Scholar 

  26. E.L. Larsson, J. Anderson and A. Coutinho, Functional consequences of sheep red blood cell rosetting for human T cells: gain of reactivity of mitogenic factors. J. Immunol. 8:693 (1978).

    CAS  Google Scholar 

  27. S.C. Meuer, R.E. Hussey, M. Fabbi, D. Fox, O. Acuto, K.A. Fitzgerald, J.C. Hodgdon, J.P. Protentis, S.F. Schlossman and E.L. Reinherz, An alternative pathway of T-cell activation: a functional role for the 50 Kd T11 sheep erythrocytes receptor protein. Cell 36:897 (1984).

    Article  PubMed  CAS  Google Scholar 

  28. T. Arvinte, B. Schulz, C. Madoulet and C. Nicolau, Red cells bearing CD4 bind to gp120 covered plates and aggregates with cells expressing gp120. J. Acq. Immun. Def. Synd. 3:1041 (1990).

    CAS  Google Scholar 

  29. M. Magnani, M. Bianchi, L. Rossi and V. Stocchi, 2’,3’-dideoxycytidine permeation of the human erythrocytes membrane. Biochem. Intern. 19:227 (1989).

    CAS  Google Scholar 

  30. D.H. Mitchell, G.T. James and C.A. Kruse, Bioactivity of electric field-pulsed human recombinant interleukin-2 and its encapsulation into erythrocytes carriers. Biotechnol. Appl. Biochem. 12:264 (1990).

    PubMed  CAS  Google Scholar 

  31. J.R. DeLoach, K. Andrews and C.L. Sheffield, Encapsu-lation of inteleukin-2 in murine erythrocytes and subsequent deposition in mice receiving a subcutaneus injection. Biotechnol. Appl. Biochem. 10:183 (1988).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chiarantini, L., Droleskey, R., Magnani, M., Kirch, H., DeLoach, J.R. (1992). Targeting of Eythrocytes to Cytotoxic T-Cells. In: Magnani, M., DeLoach, J.R. (eds) The Use of Resealed Erythrocytes as Carriers and Bioreactors. Advances in Experimental Medicine and Biology, vol 326. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3030-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3030-5_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6321-7

  • Online ISBN: 978-1-4615-3030-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics