Skip to main content

On Red Blood Cells, Hemolysis and Resealed Ghosts

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 326))

Abstract

This paper aims to consider, with a historical perspective, the characteristics of red blood cells and their ghosts that are associated with osmotic hemolysis and its reversal. Since hemolysis refers to the process by which a cell becomes permeable to hemoglobin (Hb) the term “ghost” is used to describe the resultant envelope or cell-like structure (also referred to as post-hemolytic residue or stroma) that survives the transition. This definition of the term, ghost, emphasizes the functional involvement of the plasma membrane and is independent of, or at least not biased by, the circumstances leading to its production. This definition, based on a loss of Hb by a change in the membrane’s permeability, excludes the types of changes in a cell’s Hb content that occurs, for instance, during erythroid maturation or by age related changes in cell density. While this definition of a ghost is general and independent of Hb content (ghosts can range from being nominally Hb-free to containing almost the cell’s original amount), it should also be understood that the resultant types/properties of ghosts reflect the conditions that attended the hemolytic step(s) and any subsequent treatment(s). This means that ghost characteristics are method-dependent and should be specified in every case.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.N. Stewart, The conditions that underlie the peculiarities in the behaviour of the coloured blood-corpuscles to certain substances, J. Physiol. XXVI:470 (1900).

    Google Scholar 

  2. G.N. Stewart, The mechanism of haemolysis with special reference to the relations of electrolytes to cells, J. Pharm. Exp. Therap., 1:49 (1909).

    Google Scholar 

  3. D. Ryvosh, Ueber den Einfluss des Wassers auf die Erythrocyten, in “Résumés Comm. IXme Cong. internat. Physiol.”, Groningen, p. 144 (1913).

    Google Scholar 

  4. L.E. Bayliss, Reversible Haemolysis, J. Physio1.59:48 (1924).

    CAS  Google Scholar 

  5. K. Spiro. “Habilitationsschrift”, Straß burg, Germany (1897).

    Google Scholar 

  6. J. Béron, Ü ber die sogenannte Reversion der Hämolyse, Pflügers Archiv. f.d. ges. Physiol., 220:251 (1928).

    Google Scholar 

  7. R. Brinkman and A.V. Szent-Györgyi, The reversion of Haemolysis., J. Physiol., 58:204 (1923).

    PubMed  CAS  Google Scholar 

  8. G.S. Adair, J. Barcroft and A.V. Bock, The identity of haemoglobin in human beings, J. Physiol., 55:332 (1921).

    PubMed  CAS  Google Scholar 

  9. J.F. Hoffman, Re-hemolytic characteristics of human erythrocyte ghosts and the mechanism of hemolysis, J. Cell. & Comp. Physiol., 44:335 (1954).

    Google Scholar 

  10. J.F. Hoffman, Physiological characteristics of human red blood cell ghosts, J. Gen. Physiol., 42:9 (1958).

    Article  PubMed  CAS  Google Scholar 

  11. K. Betke and E. Kleihauer, Experimentelle beladung von erythrocyten-stromata mit Hä moglobin, Klin. Wochenschr., 34:101 (1951).

    Article  Google Scholar 

  12. M.R. Clark and S.B. Shohet, Hybrid erythrocytes for membrane studies in sickle cell disease, Blood, 47:121 (1976).

    PubMed  CAS  Google Scholar 

  13. G.P. Sartiano and R.L. Hayes, Hypotonic exchange-loading of erythrocytes. II. Introduction of hemoglobins S and C into normal blood cells, J. Lab. Clin. Med., 89:30 (1977).

    PubMed  CAS  Google Scholar 

  14. N. Shaklai, J. Yguerabide, and H.M. Ranney, Classification and localization of hemoglobin binding sites on the red blood cell membrane, Biochemistry, 16:5593 (1977).

    Article  PubMed  CAS  Google Scholar 

  15. T.R. Whitaker, G.P. Sartiano, L.J. Hamelly Jr., W.L. Scott, and R.H. Glew, Hypotonic exchange loading of human erythrocytes with 59Fe-labeled rabbit hemoglobin, J. Lab. Clin. Med., 84:879 (1974).

    CAS  Google Scholar 

  16. J.F. Hoffman, M. Eden, J.S. Barr Jr. and R.H.S. Bedell, The hemolytic volume of human erythrocytes, J. Cell. and Comp. Physiol.,, 51:405 (1958).

    Article  Google Scholar 

  17. M.H. Jacobs, The exchange of material between the erythrocyte and its surroundings., The Harvey Lectures, 22:146 (1927).

    Google Scholar 

  18. D.N. Houchin, J.I. Munn and B.L. Parnell, A method for the measurement of red cell dimensions and calculation of mean corpuscular volume and surface area, Blood, 13:1185 (1958).

    PubMed  CAS  Google Scholar 

  19. R.P. Rand and A.C. Burton, Area and volume changes in hemolysis of single erythrocytes, J. Cell. and Comp Physiol., 61:245 (1963).

    Article  CAS  Google Scholar 

  20. P.B. Canham, Curves of Osmotic Fragility calculated from the isotonic areas and volumes of individual human erythrocytes, J. Cellular Physiol., 74:203 (1969).

    Article  CAS  Google Scholar 

  21. P.B. Canham and D.R. Parkinson, The area and volume of single human erythrocytes during gradual osmotic swelling to hemolysis, Can. J. Physiol. Pharmacol., 48:369 (1970).

    Article  PubMed  CAS  Google Scholar 

  22. E. Evans, and Y.-C. Fung, Improved measurements of the erythrocyte geometry, Microvascular Res., 4:335 (1972).

    Article  CAS  Google Scholar 

  23. W. Wilbrandt, Osmotische natur segenamatur nicht-osmotischer hamolysen, Pflü gers Arch. Gesamte Physiol. Menschen Tiere, 245:22 (1941).

    CAS  Google Scholar 

  24. M. Hjelm, S. Gö ran, Ö Stung, and A.E.G. Persson, The loss of certain cellular components from human erythrocytes during hypotonic hemolysis in the presence of dextran, Acta Physiol. Scand., 67:43 (1966).

    Article  PubMed  CAS  Google Scholar 

  25. R.D. MacGregor II, and C.A. Tobias, Molecular Sieving of Red Cell Membranes during Gradual Osmotic Hemolysis, J. Membrane Biol., 10:345 (1972).

    Article  CAS  Google Scholar 

  26. R.D. Macgregor II, Molecular sieving of red cell membranes during gradual osmotic hemolysis, Ph.D. thesis, University of California, Berkeley (1977).

    Book  Google Scholar 

  27. C.A. Lindbergh, A method for washing corpuscles in suspension, Science, 75:415 (1932) (see also Nature 333:97 1988).

    Article  PubMed  CAS  Google Scholar 

  28. G.K. Ackers, M.L. Doyle, D. Myers and M.A. Daugherty. Molecular code for cooperativity in hemoglobin, Science, 255:54, (1992).

    Article  PubMed  CAS  Google Scholar 

  29. M.F. Perutz. “Proteins and Nucleic Acids,” Elsevier, London (1962).

    Google Scholar 

  30. A.K. Parpart, Is osmotic hemolysis an all-or-none phenomenon? Biol. Bulletin, LXI:500 (1931).

    Article  Google Scholar 

  31. N.V.B. Marsden, M. Zade-Oppen, and L.P. Johansson, The effect of dextran on the dry mass distribution in osmotic hemolysis, Exper. Cell Res., 13:177 (1957).

    Article  CAS  Google Scholar 

  32. N.V.B. Marsden, and S.G. Ö stling, Accumulation of dextran in human red cells after haemolysis, Nature, 184:723 (1959).

    Article  PubMed  CAS  Google Scholar 

  33. H.G. Davies, N.V.B. Marsden, S. G. Ö stling, and A.M.M. Zade-Oppen, The effect of some neutral macromolecules on the pattern of hypotonic hemolysis, Acta Physiol. Scand., 74:577 (1968).

    Article  PubMed  CAS  Google Scholar 

  34. L.M. Lowenstein, The effect of albumin on osmotic hemolysis, Exper. Cell Res., 20:56 (1960).

    Article  CAS  Google Scholar 

  35. P. Seeman, Macromolecules may inhibit diffusion of hemoglobin from lysing erythrocytes by exclusion of solvent, Can. J. Physiol. & Pharm., 51:226 (1973).

    Article  CAS  Google Scholar 

  36. A.P. Minton, The effect of volume occupancy upon the thermodynamic activity of proteins: some biochemical consequences, Molec. and Cell. Biochem., 55:119 (1983).

    Article  CAS  Google Scholar 

  37. E. Ponder, and D. Marsland, The escape of hemoglobin from the red cell during hemolysis, J. Gen. Physiol., 19:35 (1935).

    Article  PubMed  CAS  Google Scholar 

  38. A.K. Parpart, and R. Ballentine, Molecular anatomy of the red cell plasma membrane, in: “Modern Trends in Physiology and Biochemistry”, E.S.G. Barron, ed., Academic Press, New York (1952), p. 135.

    Google Scholar 

  39. P.-A. Heedman, Hemolysis of individual red blood cells, Exper. Cell Res., 14:9 (1958).

    Article  CAS  Google Scholar 

  40. D. Danon, Osmotic hemolysis by a gradual decrease in the ionic strength of the surrounding medium, J. Cell. Comp. Physiol., 57:111 (1961).

    Article  PubMed  CAS  Google Scholar 

  41. A.W.L. Jay, and S. Rowlands, The stages of osmotic haemolysis, J. Physiol., 252:817 (1975).

    PubMed  CAS  Google Scholar 

  42. J.T. Saari, and J.S. Beck, Hypotonic hemolysis of human red blood cells: A two-phase process, J. Membrane Biol., 23:213 (1975).

    Article  CAS  Google Scholar 

  43. J.A. Kochen, The surface precipitation reaction in the hemolysing red cell, Proc. IX Cong. nt. Soc. Hematol., 1:19 (1962).

    Google Scholar 

  44. J.A. Kochen, Flow properties of hemoglobin in the hemolysing red cell, in: “Symposium on Biorheology. 4th Int’1. Cong. Rheol.”, Part 4, pp. 193–199, Interscience Publ. John Wiley, New York, (1965).

    Google Scholar 

  45. R.F. Baker, Ultrastructure of the red blood cell, Fed. Proc., 26:1785 (1967).

    PubMed  CAS  Google Scholar 

  46. R.F. Baker, and N.R. Gillis, Osmotic hemolysis of chemically modified red blood cells, Blood, 33:170 (1969).

    PubMed  CAS  Google Scholar 

  47. J.P. Yee, and H.C. Mell, Cell-membrane and rheological mechanisms: Dynamic osmotic hemolysis of human erythrocytes and repair of ghosts, as studied by resistive pulse spectroscopy, Biorheology, 15:321 (1978).

    PubMed  CAS  Google Scholar 

  48. M.R. Lieber, and T.L. Steck, A description of the holes in human erythrocyte membrane ghosts, J. Biol. Chem., 257:11651 (1982).

    PubMed  CAS  Google Scholar 

  49. M.R. Lieber, and T.L. Steck, Dynamics of the holes in human erythrocyte membrane ghosts, J.Biol. Chem., 257:11660 (1982).

    PubMed  CAS  Google Scholar 

  50. A.M.M. Zade-Oppen, Step movements of red cells during hypotonic haemolysis, Acta Physiol. Scand., 143:59a, 1991.

    Google Scholar 

  51. M. Szekely, S. Manyai, and F.B. Straub, Ü ber den mechanismus der osmotischen Hä molyse, Acta Physiol. Acad. Scient. Hungaricae, 3:571 (1952).

    CAS  Google Scholar 

  52. P. Seeman, Transient holes in the erythrocyte membrane during hypotonic hemolysis and stable holes in the membrane after lysis by saponin and lysolecithin, J. Cell Biol., 32:55 (1967).

    Article  PubMed  CAS  Google Scholar 

  53. P. Seeman, D. Cheng, and G.H. Iles, Structure of membrane holes in osmotic and saponin hemolysis, J. Cell. Biol., 56:519 (1973).

    Article  PubMed  CAS  Google Scholar 

  54. A. Katchalsky, O. Kedem, Cl. Klibansky, and A. De Vries, Rheological considerations of the haemolysing red blood cell, in: “Flow Properties of Blood and Other Biological Systems”, A.L. Copley and G. Stainsby, eds., Pergamon Press, New York (1960).

    Google Scholar 

  55. J.F. Hoffman, On the mechanism and measurement of shape transformations of constant volume of human red blood cells, Blood Cells, 12:565 (1987).

    PubMed  CAS  Google Scholar 

  56. H. Fricke, The rate of escape of hemoglobin from the hemolyzed red corpuscle, J. Gen. Physiol., 18:103 (1934).

    Article  PubMed  CAS  Google Scholar 

  57. E. Ponder. “Hemolysis and Related Phenomena,” Grune & Stratton, New York (1948).

    Google Scholar 

  58. R.F. Baker, Entry of ferritin into human red cells during hypotonic haemolysis, Nature, 215:424 (1967).

    Article  PubMed  CAS  Google Scholar 

  59. J.F. Hoffman, J. Hillier, I.J. Wolman, and A.K. Parpart. New high density particles in certain normal and abnormal erythrocytes, J. Cell. and Comp. Physiol., 47:245 (1956).

    Article  CAS  Google Scholar 

  60. A.C. Burton, The stretching of “pores” in a membrane, in: “Permeability and Function of Biological Membranes”, W. Bolis, A. Katchalsky, R.D. Keynes, W.R. Loewenstein, and B.A. Pethica, Eds, North-Holland Publishing Co., Amsterdam (1970).

    Google Scholar 

  61. D.J. Hanahan, J.E. Ekholm, and M.G. Luthra, Is lipid lost during preparation of erythrocyte membranes? Biochim. Biophys. Acta, 363:283 (1974).

    Article  PubMed  CAS  Google Scholar 

  62. R.F.A. Zwaal, B. Roelofsen, P. Comfurius, and L.L.M. Van Deenen, Complete purification and some properties of phospholipase C from Bacillus cereus, Biochim. Biophys. Acta, 233:474 (1971).

    Article  PubMed  CAS  Google Scholar 

  63. S.L. Schrier, A. Zachowski, P. Hervé. J.-C. Kader, and P.F. Devaux, Transmembrane redistribution of phospholipids of the human red cell membrane during hypotonic hemolysis, Biochim. Biophys. Acta, in press (1992).

    Google Scholar 

  64. J.F. Hoffman, and P.C. Laris, Determination of membrane potentials in human and Amphiuma red blood cells by means of a fluorescent probe, J. Physiol., 239:519 (1974).

    PubMed  CAS  Google Scholar 

  65. J.A. Halperin, C. Brugnara, M.T. Tosteson, T. Van Ha, and D.C. Tosteson, Voltage-activated cation transport in human erythrocytes, Am. J. Physiol.: Cell, C986 (1989).

    Google Scholar 

  66. P. Christophersen, and P. Bennekou, Evidence for a voltage-gated, non-selective cation channel in the human red cell membrane, Biochim. Biophys. Acta, 1065:103 (1991).

    Article  PubMed  CAS  Google Scholar 

  67. A.K. Parpart, and J.F. Hoffman, Flicker in erythrocytes. “Vibratory movements in the cytoplasm”? J. Cell. and Comp. Physiol., 47:295 (1956).

    Article  CAS  Google Scholar 

  68. F. Brochard, and J.F. Lennon, Frequency spectrum of the flicker phenomenon in erythrocytes, J. de Physique, 36:1035 (1975).

    Article  Google Scholar 

  69. S. Leibler, and A.C. Maggs, Simulation of shape changes and adhesion phenomena in an elastic model, Proc. Natl. Acad. Sci., 87:6433 (1990).

    Article  PubMed  CAS  Google Scholar 

  70. S. Winokuroff, Ü ber die Durchlä ssigkeit revertierter Blutkö rperchen, Pflü gers Archiv. f.d. ges. Physiol., 222:97 (1929).

    Article  Google Scholar 

  71. E. Ponder, Permeability of red cell membrane after hypotonic hemolysis, Proc. Soc. Exp. Biol. & Med., 33:630 (1935–36).

    Google Scholar 

  72. H. Dayson, and E. Ponder, CII. Studies on the permeability of erythrocytes. IV. The permeability of “ghosts” to cations, Biochem. J., XXXII:756 (1938).

    Google Scholar 

  73. T. Teorell, Permeability properties of erythrocyte ghosts, J. Gen. Physiol., 35:669 (1952).

    Article  PubMed  CAS  Google Scholar 

  74. F.B. Straub, Ü ber die akkumulation der kaliumionen durch menschliche blutkö rperchen, Acta Physiol. Hungarica, 4:235 (1953).

    CAS  Google Scholar 

  75. J.F. Hoffman, The active transport of sodium by ghosts of human red blood cells, J. Gen. Physiol., 45:837 (1962).

    Article  PubMed  CAS  Google Scholar 

  76. H. Bodemann, and H. Passow, Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis, J. Membrane Biol., 8:1 (1972).

    Article  CAS  Google Scholar 

  77. S. Lepke, and H. Passow, The effect of pH at hemolysis on the reconstitution of low cation permeability in human erythrocyte ghosts, Biochim. Biophys. Acta, 255:696 (1972).

    Article  PubMed  CAS  Google Scholar 

  78. P.G. Wood, and H. Passow, Techniques for the modification of the intracellular composition of red blood cells, in: “Techniques in Cellular Physiology - Part 1”, Elsevier/North-Holland Scientific Publishers Ltd., Ireland (1981).

    Google Scholar 

  79. J.F. Hoffman, Cation transport and structure of the red-cell plasma membrane, Circulation, XXVI:1201 (1962).

    Article  Google Scholar 

  80. J.F. Hoffman, D.C. Tosteson, and R. Whittam, Retention of potassium by human erythrocyte ghosts, Nature, 185:186 (1960).

    Article  PubMed  CAS  Google Scholar 

  81. R.M. Johnson, The kinetics of resealing of washed erythrocyte ghosts, J. Membrane Biol.,22:231 (1975).

    Article  CAS  Google Scholar 

  82. R.M. Johnson, and D.H. Kirkwood, Loss of resealing ability in erythrocyte membranes effect of divalent cations and spectrin release, Biochim. Biophys. Acta, 509:58 (1978).

    Article  PubMed  CAS  Google Scholar 

  83. B.G. Kennedy, G. Lunn, and J.F. Hoffman, Effects of altering the ATP/ADP ratio on pump-mediated Na/K and Na/Na exchanges in resealed human red blood cell ghosts, J. Gen. Physiol., 87:47 (1986).

    Article  PubMed  CAS  Google Scholar 

  84. W. Wilbrandt, Zur permeationskinetic rasch eindringen der substanzen an erythrocyten, Pflü gers Arch., 245:1 (1941).

    Article  CAS  Google Scholar 

  85. F.R. Hunter, An analysis of the photoelectric method for studying osmotic changes in chicken erythrocytes, J. Cell. & Comp. Physiol., 41:387 (1953).

    Article  CAS  Google Scholar 

  86. M.M. Billah, J.B. Finean, R. Coleman, and R.H. Michell, Preparation of erythrocyte ghosts by a glycol-induced osmotic lysis under isoionic conditions, Biochim. Biophys. Acta 433:54 (1986).

    Google Scholar 

  87. M.M. Billah, J.B. Finean, R. Coleman, and R.H. Michell, Permeability characteristics of erythrocyte ghosts prepared under isoionic conditions by a glycol-induced osmotic lysis, Biochim. Biophys. Acta, 465:515 (1977).

    Article  PubMed  CAS  Google Scholar 

  88. R.S. Franco, and R.L. Barker, Modification of the oxygen affinity and intracellular hemoglobin concentration of normal and sickle cells by means of an osmotic pulse, J. Lab. Clin. Med., 113:58 (1989).

    PubMed  CAS  Google Scholar 

  89. J. Hillier, and J.F. Hoffman, On the ultrastructure of the plasma membrane as determined by the electron microscope, J. Cell. and Comp. Physiol., 42:203 (1953).

    Article  CAS  Google Scholar 

  90. S.L. Schrier, and L.S. Doak, Studies of the metabolism of human erythrocyte membranes, J. Clin. Invest., 42:756 (1963).

    Article  PubMed  CAS  Google Scholar 

  91. D. Danon, A. Nevo, and Y. Marikovsky, Preparation of erythrocyte ghosts by gradual haemolysis in hypotonic aqueous solution, Bull. Res. Counc. of Israel, 6E:36 (1956).

    Google Scholar 

  92. C. Klibansky, The reversible opening of the red blood cell membrane and introduction of protein into the red blood cell ghost, Ph.D. Thesis„ Hebrew University, Jerusalem (1959).

    Google Scholar 

  93. C. Klibansky, A. De Vries, and A. Katchalsky, La pé né tration de l’albumine et de l’hé moglobine dan les é rythrocytes au cours de l’hé molyse, Pathologie-Biologie, 8:2005 (1960).

    CAS  Google Scholar 

  94. H. Dayson, and E. Ponder, Cation permeability. Its relation to hemolysis, J. Cell Comp. Physiol., 15:67 (1940).

    Article  Google Scholar 

  95. E. Ponder, The permeability of human red cells to cations after treatment with resorcinol, n-butyl alcohol and similar lysins, J. Gen. Physiol., 32:53 (1948).

    Article  PubMed  CAS  Google Scholar 

  96. E.B. Hendry, Delayed hemolysis of human erythrocytes in solutions of glucose, J. Gen. Physiol., 35:605 (1951).

    Article  Google Scholar 

  97. P. Seeman, T. Sauks, W. Argent, and W.O. Kwant, The effect of membrane-strain rate and of temperature on erythrocyte fragility and critical hemolytic volume, Biochim. Biophys. Acta, 183:476 (1969).

    Article  PubMed  CAS  Google Scholar 

  98. J.C. Parker, and P.B. Dunham, Passive Cation Transport, in: “Red Blood Cell Membranes,” P. Agre and J.C. Parker, eds., Hematology series, Vol. 11, Marcel Dekker, Inc., New York (1989).

    Google Scholar 

  99. A.K. Parpart, E.R. Parpart, and T. Dey, The relation between hemolysis and the potassium content of red cells, Biol. Bull., 101:200 (1951).

    Google Scholar 

  100. D.C. Tosteson, and J.F. Hoffman, Regulation of cell volume by active cation transport in high and low potassium sheep red cells, J. Gen. Physiol., 44:169 (1960).

    Article  PubMed  CAS  Google Scholar 

  101. G.N. Stewart, A contribution to our knowledge of the action of saponin on the blood corpuscles and pus corpuscles, J. Exp. Med., 6:257 (1902).

    Article  PubMed  CAS  Google Scholar 

  102. E. Ponder, Volume changes in hemolytic systems containing resorcinol, taurocholate, and saponin, J. Gen. Physiol., 31:325 (1948).

    Article  PubMed  CAS  Google Scholar 

  103. J.S. Cook, The quantitative interrelationships between ion fluxes, cell swelling, and radiation dose in ultraviolet hemolysis, J. Gen. Physiol., 48:719 (1965).

    Article  PubMed  CAS  Google Scholar 

  104. J.R. DeLoach, Carrier erythrocytes, Med. Res. Reviews, 6:487 (1986).

    Article  CAS  Google Scholar 

  105. G.M. Ihler, and H.C.-W. Tsang, Hypotonic hemolysis methods for entrapment of agents in resealed erythrocytes, in: “Drug and Enzyme Targeting, Part B”, Methods in Enzymology series, Vol. 149, R. Green and K.J. Widder, eds., Academic Press, Inc., San Diego (1987).

    Google Scholar 

  106. G.L. Dale, High-efficiency entrapment of enzymes in resealed red cell ghosts by dialysis, in: “Drug and Enzyme Targeting, Part B”, Methods in Enzymology series, Vol. 149, R. Green and K.J. Widder, eds., Academic Press, Inc., San Diego (1987).

    Google Scholar 

  107. J.R. DeLoach, Dialysis method for entrapment of proteins into resealed red blood cells, in: “Drug and Enzyme Targeting, Part B”, Methods in Enzymology series, Vol. 149, R. Green and K.J. Widder, eds., Academic Press, Inc., San Diego (1987).

    Google Scholar 

  108. C. Ropars, G. Avenard, and M. Chassaigne, Large-scale entrapment of drugs into resealed red blood cells using a continuous-flow dialysis system, in: “Drug and Enzyme Targeting, Part B”, Methods in Enzymology series, Vol. 149, R. Green and K.J. Widder, eds., Academic Press, Inc., San Diego (1987).

    Google Scholar 

  109. M.D. Scott, F.A. Kuypers, P. Butikofer, R.M. Bookchin, O.E. Ortiz, and B.H. Lubin, Effect of osmotic lysis and resealing on red cell structure and function, J. Lab. Clin. Med., 115:470 (1990).

    PubMed  CAS  Google Scholar 

  110. G. Gérdos, Akkumulation der kaliumionen durch menschliche blutkö rperchen, Acta Physiol. (Hungarica), 6:191 (1954).

    Google Scholar 

  111. J.F. Hoffman, The link between metabolism and active transport of sodium in human red cell ghosts, J. Membrane Biol., 57:143 (1980).

    Article  CAS  Google Scholar 

  112. I.M. Glynn, and J.F. Hoffman, Nucleotide requirements for sodium-sodium exchange catalysed by the sodium pump in human red cells, J. Physiol., 218:239 (1971).

    PubMed  CAS  Google Scholar 

  113. G.M. Ihler, R.H. Glew, and F.W. Schnure, Enzyme loading of erythrocytes, Proc. Nat. Acad. Sci., 70:2663 (1973).

    Article  PubMed  CAS  Google Scholar 

  114. J.R. DeLoach, and U. Sprandel, eds., “Red Blood Cells as Carriers for Drugs,” Bibliotheca Haematologica series No. 51, S. Karger AG, Basel, Switzerland (1985).

    Google Scholar 

  115. C. Ropars, M. Chassaigne, and C. Nicolau, eds., “Red Blood Cells as carriers for drugs. Potential Therapeutic Applications,” Advances in the Biosciences series, Volume 67, Pergamon Press, Great Britain (1987).

    Google Scholar 

  116. R. Green, and J.R. DeLoach, eds., “Resealed Erythrocytes as Carriers and Bioreactors,” Adv. Biosciences series, Volume 81, Pergamon Press, New York (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hoffman, J.F. (1992). On Red Blood Cells, Hemolysis and Resealed Ghosts. In: Magnani, M., DeLoach, J.R. (eds) The Use of Resealed Erythrocytes as Carriers and Bioreactors. Advances in Experimental Medicine and Biology, vol 326. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3030-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3030-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6321-7

  • Online ISBN: 978-1-4615-3030-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics