Skip to main content

The Unusual Mechanism of Arenavirus RNA Synthesis

  • Chapter
The Arenaviridae

Part of the book series: The Viruses ((VIRS))

Abstract

Animal viruses that contain single-stranded RNA genomes are broadly divided into two groups;

  1. 1.

    Those whose genomes are of positive polarity and which function directly as mRNAs. The capsids of these viruses are icosahedral, and in general these genomes contain 5’ cap groups and 3’ poly(A) tails, reflecting their roles as mRNA. These genomes as naked RNA are infectious

  2. 2.

    Those whose genomes are the complements of mRNA, or of negative polarity. These are also distinguished from (+) RNA viruses in that.

    1. a

      The capsids of these viruses have helical symmetry and are packaged into virions together with the viral polymerase. This complex, the nucleocapsid (NC), allows mRNA synthesis to begin immediately upon infection, without de novo protein synthesis.

    2. b

      In general, (-) RNA genomes do not contain the hallmarks of mRNA (5’ caps and 3’ poly(A) tails).

    3. c

      These genomes as naked RNA are not infectious. The minimum unit of infectivity here is the viral NC, including its polymerase; otherwise there is no way to begin viral gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auperin, D. D., Romanowski, V., Galinski, M., and Bishop, D. H. L., 1984, Sequencing studies of Pichinde arenavirus S RNA indicate a novel coding strategy, an ambisense viral S RNA, J. Virol. 52:897.

    PubMed  CAS  Google Scholar 

  • Banerjee, A. K., 1980, 5’ Terminal cap structure in eucaryotic messenger ribonucleic acids, Microbiol. Rev. 44:175.

    PubMed  CAS  Google Scholar 

  • Bishop, D. H. L., and Auperin, D. D., 1987, Arenavirus gene structure and organization, Curr. Top. Microbiol. Immunol. 133:5.

    Article  PubMed  CAS  Google Scholar 

  • Downey, K. M., Jurmark, B. S., and So, A. G., 1971, Determination of nucleotide se-quences at promoter regions by the use of dinucleotides, Biochemistry 10:4970.

    Article  PubMed  CAS  Google Scholar 

  • Franze-Fernandez, M. T., Zetina, C., Iapalucci, S., Lucero, M. A., Bouissou, C., Lopez, R., Rey, O., Daheli, M., Cohen, G. N., and Zakin, M. M., 1987, Molecular structure and early events in the replication of Tacaribe arenavirus S RNA, Virus Res. 7:309.

    Article  PubMed  CAS  Google Scholar 

  • Fuller-Pace, F. V., and Southern. P. J., 1989, Detection of virus-specific RNA-dependent RNA polymerase activity in extracts from cells infected with lymphocytic choriomeningitis virus: In vitro synthesis in full-length viral RNA species, J. Virol. 63:1938.

    PubMed  CAS  Google Scholar 

  • Garcin, D., and Kolakofsky, D., 1990, A novel mechanism for the initiation of Tacaribe arenavirus genome replication, J. Virol. 64:6196.

    PubMed  CAS  Google Scholar 

  • Garcin, D., and Kolakofsky, D., 1992, Tacaribe arenavirus RNA synthesis in vitro is primer dependent, and suggests an unusual model for the initiation of genome replication, J. Virol. 66:1370.

    PubMed  CAS  Google Scholar 

  • Greider, C. W., and Blackburn, E. H., 1989, A telomeric sequence in the RNA of Tetrahy-mena telomerase required for telomere repeat synthesis, Nature 337:331.

    Article  PubMed  CAS  Google Scholar 

  • Iapalucci, S., Lopez, R., Rey, O., Lopez, N., Franze-Fernandez, M. T., Cohen, G. N., Lu-cero, M., Ochoa, A., and Zakin, M. M., 1989a, Tacaribe virus L gene encodes a protein of 2210 amino acid residues, Virology 170:40.

    Article  CAS  Google Scholar 

  • Iapalucci, S., Lopez, N., Rey, O., Zakin, M. M., Cohen, G. N., and Franze-Fernandez, M. T., 1989b, The 5’ region of Tacaribe virus L RNA encodes a protein with a potential metal binding domain, Virology 173:357.

    Article  CAS  Google Scholar 

  • Iapalucci, S., Lopez., N., and Franze-Ferndndez, M. T., 1991, The 3’ end termini of the Tacaribe arenavirus subgenomic RNAS, Virology 182:269.

    Article  PubMed  CAS  Google Scholar 

  • Jacques, J. P., and Kolakofsky, D., 1991, Pseudo-templated transcription in prokaryotic and eukaryotic organisms, Genes Dev. 5:707.

    Article  PubMed  CAS  Google Scholar 

  • Kolakofsky, D., and Hacker, D., 1991, Bunyavirus RNA synthesis: Genome transcription and replication, Curr. Top. Microbiol. Immunol. 169:143.

    Article  PubMed  CAS  Google Scholar 

  • Krug, R. M., 1981, Priming of influenza viral RNA transcription by capped heterologous RNAS, Curr. Top. Microbiol. Immunol. 23:125.

    Article  Google Scholar 

  • Krug, R. M., 1983, Transcription and replication of influenza viruses, in: Genetics of Influenza Viruses (P. Palese and D. W. Kingsbury, eds.), pp. 70–98, Springer-Verlag, Vienna.

    Chapter  Google Scholar 

  • Lamb, R. A., and Choppin, P. W., 1983, The gene structure and replication of influenza virus, Annu. Rev. Biochem. 52:467.

    Article  PubMed  CAS  Google Scholar 

  • Leung, W. C., Gosh, H. P., and Rawls, W. E., 1977, Strandedness of Pichinde virus RNA. J. Virol. 22:235.

    PubMed  CAS  Google Scholar 

  • McGeoch, D., and Kitron, N., 1975, Influenza virion RNA-dependent RNA polymerase: stimulation by guanosine and related compounds, J. Virol. 4:686–695.

    Google Scholar 

  • Milligan, J. F., Groebe, D. R., Witherell, G. W., and Uhlenbeck, O. C..1987, Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 11:8783.

    Article  Google Scholar 

  • Patterson, J. L., Holloway, B., and Kolakofsky, D., 1984, La Crosse virions contain a primer-stimulated RNA polymerase and a methylated cap-dependent endonuclease, J. Virol. 52:215.

    PubMed  CAS  Google Scholar 

  • Plotch, S. J., and Krug, R. M., 1977, Influenza virion transcriptase: synthesis in vitro of large, polyadenylic acid-containing complementary RNA, J. Virol. 1:24.

    Google Scholar 

  • Plotch, S. J., and Krug, R. M., 1978, Segments of influenza virus complementary RNA synthesized in vitro. J. Virol. 2:579.

    Google Scholar 

  • Raju, R., Raju, L., Hacker, D., Garcin, D., Compans, R., and Kolakofsky, D., 1990, Non-templated bases at the 5’ ends of Tacaribe virus mRNAs, Virology 174:53.

    Article  PubMed  CAS  Google Scholar 

  • Vidal, S., Curran, J., and Kolakofsky, D., 1990, A stuttering model for paramyxovirus PMRNA editing, EMBO J. 2:2017.

    Google Scholar 

  • Weber, H., and Weissmann, C., 1970, The 3’-termini of bacteriophage Q-beta plus and minus strands, J. Mol. Biol. 51:215.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kolakofsky, D., Garcin, D. (1993). The Unusual Mechanism of Arenavirus RNA Synthesis. In: Salvato, M.S. (eds) The Arenaviridae. The Viruses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3028-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3028-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6320-0

  • Online ISBN: 978-1-4615-3028-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics