Skip to main content

Influence of Host Genes on the Outcome of Murine Lymphocytic Choriomeningitis Virus Infection

A Model for Studying Genetic Control of Virus-Specific Immune Responses

  • Chapter
The Arenaviridae

Part of the book series: The Viruses ((VIRS))

Abstract

One of the most important challenges in pathogenesis is to understand the influence of host genes on disease susceptibility. It is an attractive hypothesis to geneticists that the existence of extensive polymorphisms within populations implies that various alleles confer certain selective advantages for survival under particular evolutionary pressures. Thus, it is not surprising that when the extensive polymorphism at HLA loci (the designation for major histocompatibility complex of genes, MHC, in humans) was discovered, geneticists examined a variety of diseases for possible associations with one or more alleles at this complex of loci. Further impetus for these studies was the observation by Lilly and coworkers (1964) that in mice the H-2 complex (the designation for MHC in mice) controlled susceptibility to viral leukemogenesis. Unfortunately, the most striking finding in the majority of ensuing studies on resistance to infectious disease, in both men and mice, was how little disease resistance is influenced by MHC (Brinton and Nathanson, 1981; Clatch et al., 1987; Klein, 1986). A rare exception is the finding of two HLA types frequent among West Africans being associated with resistance to severe malaria (Hill et al., 1991). This is in contrast to the well-known associations between HLA and many autoimmune diseases (Tiwari and Terasaki, 1985). This correlation is quite understandable since until recently there was virtually no selection against noninfectious diseases, probably because people died before the diseases could develop (Klein, 1986). Although this is not the case today, autoimmune diseases still do not appear to exert any selective pressure on the population because most of them become apparent after the age of reproduction. Even at this time, the development of disease is basically a statistical risk. This could be due to multigenic effects (see below) or the need for exposure to a triggering factor (even in monozygous twins there is discordance, Tiwari and Terasaki, 1985). In addition, in almost no case do we know the etiological agent(s) responsible for an HLA-associated disease. As Klein (1986) states, “In fact, at the present stage, the study of HLA-associated diseases has about the same value to medicine as beetle counting had to zoology 200 years ago.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed, R., and Oldstone, M. B. A., 1988, Organ-specific selection of viral variants during chronic infection, J. Exp. Med. 167:1719.

    Article  PubMed  CAS  Google Scholar 

  • Ahmed, R., Salmi, A., Butler, L. D., Chiller, J. M., and Oldstone, M. B. A., 1984, Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice, J. Exp. Med. 60:521.

    Article  Google Scholar 

  • Ahmed, R., Butler, L. D., and Bhatti, L., 1988, T4 T helper cell function in vivo: Differential requirement for induction of antiviral cytotoxic T-cell and antibody responses, J. Virol. 62:2102.

    PubMed  CAS  Google Scholar 

  • Allan, J. E., and Doherty, P. C., 1985, Consequences of a single Ir-gene defect for the pathogenesis of lymphocytic choriomeningitis, Immunogenetics 21:581.

    Article  PubMed  CAS  Google Scholar 

  • Allan, J E, Dixon, J. E., and Doherty, P. C., 1987, Nature of the inflammatory process in the central nervous system of mice infected with lymphocytic choriomeningitis virus, Curr. Top. Microbiol. Immunol. 134:131.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, I. H., Marker, O., and Thomsen, A. R., 1991, Breakdown of blood-brain barrier function in the murine lymphocytic choriomeningitis virus infection mediated by virus-specific CD8+ T cells, J. Neuroimmunol. 31:155.

    Article  PubMed  CAS  Google Scholar 

  • Andersson, L., Paabo, S., and Rask, L., 1987, Is allograft rejection a clue to the mechanism promoting MHC polymorphism, Immunol. Today 8:206.

    Article  Google Scholar 

  • Arora, P. K., and Shearer, G. M., 1981, Non-MHC-linked genetic control of murine cytotoxic T lymphocyte responses to hapten-modified syngeneic cells, J. Immunol. 127:1822.

    PubMed  CAS  Google Scholar 

  • Baenzinger, J., Hengartner, H., Zinkernagel, R. M., and Cole, G. A., 1986, Induction or prevention of immunopathological disease by cloned cytotoxic T cell lines specific for lymphocytic choriomeningitis virus, Eur. J. Immunol. 16:387.

    Article  Google Scholar 

  • Bennink, J. R., and Yewdell, J. W., 1988, Murine cytotoxic T lymphocyte recognition of individual influenza virus proteins. High frequency of nonresponder MHC class I alleles, J. Exp. Med. 168:1935.

    Article  PubMed  CAS  Google Scholar 

  • Brinton, M. A., and Nathanson, N., 1981, Genetic determinants of virus susceptibility: Epidemiologic implications of murine models, Epidemiol. Rev. 3:115.

    PubMed  CAS  Google Scholar 

  • Byrne, J. A., and Oldstone, M. B. A., 1984, Biology of cloned cytotoxic T lymphocytes specific for lymphocytic choriomeningitis virus: clearance of virus in vivo, J. Virol. 51:682.

    PubMed  CAS  Google Scholar 

  • Bukowski, J. F., Woda, B. A., Habu, S., Okumura, K., and Welsh, R. M., 1983, Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo, J. Immunol 131:1531.

    PubMed  CAS  Google Scholar 

  • Buller, R. M. L., Holmes, K. L., Hagin, A., Frederickson, T. N., and Morse, H. C., 1987, Induction of cytotoxic T-cell responses in vivo in the absence of CD4 helper cells, Nature 328:77.

    Article  PubMed  CAS  Google Scholar 

  • Cerny, A., Huegin, A. W., Sutter, S., Bazin, H., Hengartner, H. H., and Zinkernagel, R. M., 1986, Immunity to lymphocytic choriomeningitis virus in B cell-depleted mice: evidence for B cell and antibody independent protection by memory T cells, Eur. J. Immunol. 16:913.

    Article  PubMed  CAS  Google Scholar 

  • Christoffersen, P. J., Volkert, M., and Rygaard, J., 1976, Immunological unresponsiveness of nude mice to LCM virus infection, Acta Pathol. Microbiol. Scand. Sec. B 84:520.

    Google Scholar 

  • Clatch, R. J., Melvold, R. W., DalCanto, M. C., Miller, S. D., and Lipton, H. L., 1987, The Theiler’s murine encephalomyelitis virus (TMEV) model for multiple sclerosis shows a strong influence of the murine equivalents of HLA-A,B, and C, J. Neuroimmunol. 15:121.

    Article  PubMed  CAS  Google Scholar 

  • Cole, G. A., Nathanson, N., and Prendergast, R. A., 1972, Requirement for theta-bearing cells in lymphocytic choriomeningitis virus-induced central nervous system disease, Nature 238:335.

    Article  PubMed  CAS  Google Scholar 

  • Conta, B. S., Powell, M. B., and Ruddle, N.H., 1985, Activation of Lyt-l+ and Lyt-2+ T cell cloned lines: stimulation of proliferation, lymphokine production and self-destruction, J. Immunol. 134:2185.

    PubMed  CAS  Google Scholar 

  • Datta, S. K., Tsichlis P., Schwartz, R. S., Chattophadhyay, S. K., and Melief, C. J. M., 1978, Genetic difference unrelated to H-2 in H-2 congenic mice, Immunogenetics 7:359.

    Article  PubMed  CAS  Google Scholar 

  • De Waal, L. P., Kast, W. M., Melvold, R. W., and Melief, C. J. M., 1983, Regulation of the cytotoxic T-lymphocyte response against Sendai virus analyzed with H-2 mutants, J. Immunol. 130:1090.

    Google Scholar 

  • Doherty, P. C., and Zinkernagel, R. M., 1974, T-cell-mediated immunopathology in viral infections, Transplant. Rev. 19:89.

    PubMed  CAS  Google Scholar 

  • Doherty, P. C., and Zinkernagel, R. M., 1975, Capacity of sensitized thymus-derived lymphocytes to induce fatal lymphocytic choriomeningitis is restricted by the H-2 complex, J. Immunol. 114:30.

    PubMed  CAS  Google Scholar 

  • Doherty, P. C., Blanden, R. V., and Zinkernagel, R. M., 1976, Specificity of virus-immune effector T cells for H-2K or H-2D compatible interactions, Transplant. Rev. 29:89.

    PubMed  CAS  Google Scholar 

  • Doherty, P. C., Biddison, W. E., Bennink, J. R., Knowles, B. B., 1978, Cytotoxic T cell responses in mice infected with influenza and vaccinia virus vary in magnitude with H-2 type, J Exp. Med. 148:534.

    Article  PubMed  CAS  Google Scholar 

  • Dunlop, M. B. C., and Blanden, R. V., 1977, Mechanisms of suppression of cytotoxic T cell responses in murine lymphocytic choriomeningitis virus infection, J. Exp. Med. 145:1131.

    Article  PubMed  CAS  Google Scholar 

  • Ellman, L., Green, I., Martin, W. J., and Benacerraf, B., 1970, Linkage between the PLL gene and the locus controlling the major histocompatibility antigen in strain 2 guinea pigs, Proc. Natl. Acad. Sci. USA 66:322.

    Article  PubMed  CAS  Google Scholar 

  • Epstein, R., Sham, G., Womack, J., Yague, J., Palmer, E., and Cohn, M., 1986, The cytotoxic T cell response to malespecific histocompatibility antigen (H-Y) is controlled by two dominant immune response genes, one in the MHC, the other in the Tar a-locus, J. Exp. Med. 163:759.

    Article  PubMed  CAS  Google Scholar 

  • Eyler, Y. L., Pfau, C. J., Broomhall, K. S., and Thomsen, A. R., 1989, The combination of MHC and non-MHC genes influence murine LCM virus pathogenesis, Scand. J. Immunol. 29:527.

    Article  PubMed  CAS  Google Scholar 

  • Fiertz, W., Brenan, M., Mullbacher, A., and Simpson, E., 1982, Non-H-2 and H-2-linked immune response genes control the cytotoxic T-cell response to H-Y, Immunogenetics 15:261.

    Article  Google Scholar 

  • Frelinger, J. A., Orn, A., Brayton, P. R., and Hood, L., 1983, Use of cloned H-2 genes for study of H-2-restricted cytotoxicity: Ld is the LCMV restriction element for H-2’, Transplant. Proc. 15:2024.

    PubMed  CAS  Google Scholar 

  • Gallo, R. C., 1987, The AIDS Virus, Sci. Am. 256:47.

    Article  Google Scholar 

  • Gilden, D. H., Cole, C. A., and Nathanson, N., 1972, Immunopathogenesis of acute central nervous system disease produced by lymphocytic choriomeningitis virus. II. Adoptive immunization of virus carriers, J. Exp. Med. 135:874.

    Article  PubMed  CAS  Google Scholar 

  • Gomez, A., Bourgault, I., Gomard, E., Picard, F., and Levy, J-P., 1989, Role of different lymphocyte subsets in human antiviral T cell cultures, Cell. Immunol. 118:312. Haywood, A., 1986, Patterns of persistent virus infections, N. Engl. J. Med. 315:939.

    Google Scholar 

  • Hedrick, P. W., and Thomson, G., 1983, Evidence for balancing selection at HLA, Genetics 104:449.

    PubMed  CAS  Google Scholar 

  • Hill, A. V. S., Allsopp, C. E. M., Kwiatkowski, D., Anstey, N. M., Twumasi, P., Rowe, P. A., Bennett, S., Brewster, D., McMichael, A. J., and Greenwood, B. M., 1991, Common West African HLA antigens are associated with protection from severe malaria, Nature 352:595.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, M. S., Murphy, F. A., Russe, H. P., and Hicklin, M. D., 1967, Effects of antithymocyte serum on lymphocytic choriomeningitis (LCM) virus infection in mice, Proc. Soc. Exp. Biol. Med. 125:980.

    PubMed  CAS  Google Scholar 

  • Hotchin, J., 1971, Persistent and slow virus infections, in: Monographs in Virology Vol. 3, (J. L. Melnick, ed.), S. Karger, Basel.

    Google Scholar 

  • Hotchin, J., and Weigand, H., 1961a, Studies on lymphocytic choriomeningitis virus in mice. I. The relationship between age at inoculation and outcome of infection, J. Immunol. 86:392.

    CAS  Google Scholar 

  • Hotchin, J., and Weigand, H., 1961b, The effects of pretreatment with X-rays on the pathogenesis of lymphocytic choriomeningitis in mice. I. Host survival, virus multiplication and leukocytosis, J. Immunol. 87:675.

    CAS  Google Scholar 

  • Hurme, M., Chandler, P. R., Hetherington, C. M., and Simpson, E., 1978, Cytotoxic T cell responses to H-Y: Mapping of the Ir genes, J. Exp. Med. 147:758.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, S., and Pfau, C. J., 1980, Viral pathogenesis and resistance to defective interfering particles, Nature 238:311.

    Article  Google Scholar 

  • Johnson, E. D., Monjan, A. A., and Morse III, H.C., 1978, Lack of B-cell participation in acute lymphocyte choriomeningitis disease of the central nervous system, Cell. Immunol. 36:143.

    Article  PubMed  CAS  Google Scholar 

  • Katz, D. H., and Benacerraf, B., 1975, The function and interrelationship of T-cell receptors, Ir genes and other histocompatibility gene products, Transplant. Rev. 22:175.

    PubMed  CAS  Google Scholar 

  • Klein, J., 1986, Natural History of the Major Histocompatibility Complex, Wiley, New York.

    Google Scholar 

  • King, C-C., de Fries, R., Kolhekar, S. R., and Ahmed, R., 1990, In vivo selection of lymphocyte-tropic and macrophage-tropic variants of lymphocytic choriomeningitis virus during persistent infection, J. Virol. 64:5611.

    PubMed  CAS  Google Scholar 

  • Kojima, M., Cease, K. B., Buckenmeyer, G. K., and Berzofsky, J. A., 1988, Limiting dilution comparison of high and low responder MHC-restricted T cells, J. Exp. Med. 167:1100.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann-Grube, F., 1975, Discussion, Bull. WHO 52:485.

    Google Scholar 

  • Lehmann-Grube, F., Cihak, J., Varho, M., and Tijerina, R., 1982, The immune response of the mouse to lymphocytic choriomeningitis virus. II. Active suppression of cellmediated immunity by infection with high virus doses, J. Gen. Virol. 58:223.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann-Grube, F., Assmann, U., Loliger, C., Moskophidis, D., and Lohler, J., 1985, Mechanism of recovery from acute virus infection. I. Role of T lymphocytes in clearance of lymphocytic choriomeningitis virus from spleens of mice, J. Immunol. 134:608.

    PubMed  CAS  Google Scholar 

  • Leist, T. P., Aguet, M., Hassig, M., Pevear, D. C., Pfau, C. J., and Zinkernagel, R. M., 1987a, Lack of correlation between serum titres of interferon a, o, natural killer cell activity and clinical susceptibility in mice infected with two isolates of lymphocytic choriomeningitis virus, J. Gen. Virol. 68:2213.

    Article  CAS  Google Scholar 

  • Leist, T. P., Cobbold, S. P., Waldmann, H., Aguet, M., and Zinkernagel, R. M., 1987b, Functional analysis of T lymphocyte subsets in antiviral host defense, J. Immunol. 138:2278.

    CAS  Google Scholar 

  • Lilly, F., Boyse, E. A., and Old, L. J., 1964, Genetic basis of susceptibility to viral leukemogenesis, Lancet 2:1207.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald, H. R., Ceredig, R., Cerottini, J.-C., Kelso, A., and Glasebrook, A. L., 1983, Heterogeneity of lymphokine production by T lymphocytes: Analysis of established clones and primary limiting dilution microcultures, in: Progress of Immunology, Vol. V (Y. Todaro and T. Tada, eds.), pp. 247–258, Academic Press, Japan.

    Google Scholar 

  • Marker, O., and Thomsen, A. R., 1986, T-cell effector function and unresponsiveness in the murine lymphocytic choriomeningitis virus infection. I. On the mechanism of a selective suppression of the virus-specific delayed-type hypersensitivity response, Scand. J. Immunol. 24:127.

    Article  PubMed  CAS  Google Scholar 

  • Marker, O., and Thomsen, A. R., 1987, Clearance of virus by T lymphocytes mediating delayed type hypersensitivity, Curr. Top. Microbiol. Immunol. 134:145.

    Article  PubMed  CAS  Google Scholar 

  • Marker, O., and Volkert, M., 1973, Studies on cell-mediated immunity to lymphocytic choriomeningitis virus in mice, J. Exp. Med. 137:1511.

    Article  PubMed  CAS  Google Scholar 

  • Marker, O., Nielsen, M. H., and Diemer, N. H., 1984, The permeability of the blood-brain barrier in mice suffering from fatal lymphocytic choriomeningitis virus infection, Acta Neuropathol. (Berl.) 63:229.

    Article  CAS  Google Scholar 

  • Marker, O., Thomsen, A. R., Volkert, M., Hansen, B. L., and Clemmensen, I. N., 1985, High-dose survival in the lymphocytic choriomeningitis virus infection is accompanied by suppressed DTH but unaffected T-cell cytotoxicity, Scand. J. Immunol. 21:81.

    Article  PubMed  CAS  Google Scholar 

  • Marrack, P., and Kappler, J., 1987, The T-cell receptor, Science 238:1073.

    Article  PubMed  CAS  Google Scholar 

  • McDevitt, H. O., and Chinitz, A., 1969, Genetic control of antibody response: Relationship between immune response and histocompatibility (H-2) type, Science 163:1207.

    Article  Google Scholar 

  • McDevitt, H. O., Deak, B. D., Shreffler, D. C., Klein, J., Stimpfling, J. H., and Snell, G. D., 1972, Genetic control of the immune response. Mapping of the Ir-1 locus, J. Exp. Med. 135:1259.

    Article  Google Scholar 

  • Melvold, R. W., 1986, Inbred, congenic, recombinant-inbred and mutant mouse strains, in: Handbook of Experimental Immunology, Vol. 3. Genetics and Molecular Immunology (D. M. Weir, ed.), pp. 106.1–106.20, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Mims, C. A., and Blanden, R. V., 1972, Antiviral action of immune lymphocytes in mice infected with lymphocytic choriomeningitis virus, Infect. Immun. 6:695.

    PubMed  CAS  Google Scholar 

  • Mizuochi, T., Hugin, A. W., Morse, H. C., Singer, A., and Buller, R. M. L., 1989, Role of lymphokine-secreting CD8+ T cells in cytoxic T lymphocyte responses against vaccinia virus, J. Immunol. 142:270.

    PubMed  CAS  Google Scholar 

  • Moskophidis, D., Cobbold, S. P., Waldmann, H., and LehmannGrube, F., 1987, Mechanism of recovery from acute virus infection: treatment of lymphocytic choriomeningitis virus-infected mice with monoclonal antibodies reveals that Lyt-2+ T lymphocytes mediate clearance of virus and regulate the antiviral antibody response, J Virol. 61:1867.

    PubMed  CAS  Google Scholar 

  • Mullbacher, A., Brenan, M., and Bowern, N., 1983, The influence of non-MHC genes on the cytotoxic T-cell response to modified self, Aust. J. Exp. Biol. Med. Sci. 61:57.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, Z. A., Baxevanis, C. N., Ishii, N., and Klein, J., 1981, Ia antigens as restriction molecules in Ir-gene-controlled T-cell proliferation, Immunol. Rev. 60:59.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, Z. A., Lehmann, P. V., Falcioni, F., Muller, S., and Adorni, L., 1989, Why peptides? Their possible role in the evolution of MHC-restricted T-cell recognition, Immunol. Today 10:132.

    Article  PubMed  CAS  Google Scholar 

  • Neustadt, P. M., Cody, T. S., and Monjan, A. A., 1978, Failure to find H-2-associated susceptibility to LCM disease, I. Immunogenetics 5:397.

    Article  CAS  Google Scholar 

  • Oldstone, M. B. A., 1975, Relationship between major histocompatibility antigens and disease, Bull. WHO 52:479.

    PubMed  CAS  Google Scholar 

  • Oldstone, M. B. A., and Dixon, F. J., 1968, Susceptibility of different mouse strains to lymphocytic choriomeningitis virus, J. Immunol. 100:355.

    PubMed  CAS  Google Scholar 

  • Oldstone, M. B. A., Dixon, F. J., Mitchell, G. F., and McDevitt, H. O., 1973, Histocompatibility-linked genetic control of disease susceptibility, J. Exp. Med. 137:1201.

    Article  PubMed  CAS  Google Scholar 

  • Orn, A., Goodenow, R. S., Hood, L., Brayton, P. R., Woodward, J. G., Harmon, R. C., and Frelinger, J. A., 1982, Product of a transferred H-2L° gene acts as a restriction element for LCMV-specific killer T cells, Nature 297:415.

    Article  PubMed  CAS  Google Scholar 

  • Pevear, D. C., and Pfau, C. J., 1989, Lymphocytic choriomeningitis virus, in: Clinical and Molecular Aspects of Neurotropic Virus Infections (D. H. Gilden and H. L. Lipton, eds.), pp. 141–172, Kluwer Academic Publishers, New York.

    Chapter  Google Scholar 

  • Pfau, C. J., Valenti, J. K., Jacobson, S., and Pevear, D. C., 1982a, Cytotoxic T cells are induced in mice infected with lymphocytic choriomeningitis virus strains of markedly different pathogenicities, Infect. Immun. 36:598.

    CAS  Google Scholar 

  • Pfau, C. J., Valenti, J. K., Pevear, D. C., and Hunt, K. D., 1982b, Lymphocytic choriomeningitis virus killer cells are lethal only in weakly disseminated murine infections, J. Exp. Med. 156:79.

    Article  CAS  Google Scholar 

  • Pfau, C. J., Gresser, I., and Hunt, K. D., 1983, Lethal role of interferon in lymphocytic choriomeningitis virus-induced encephalitis, J. Gen. Virol. 64:1827.

    Article  PubMed  CAS  Google Scholar 

  • Pfau, C. J., Saron, M-F., and Pevear, D. C., 1985, Lack of correlation between cytotoxic T lymphocytes and lethal murine lymphocytic choriomeningitis, J. Immunol. 135:597.

    PubMed  CAS  Google Scholar 

  • Potts, W. K., Manning C. J., and Wakeland, E. K., 1991, Mating patterns in seminatural populations of mice influenced by MHC genotype, Nature 352:619.

    Article  PubMed  CAS  Google Scholar 

  • Price, P., Gibbons, A. E., and Shellam, G. R., 1990, H-2 class I loci determine sensitivity to MCMV in macrophages and fibroblast, Immunogenetics 32:20.

    Article  PubMed  CAS  Google Scholar 

  • Prystowsky, M. B., Ely, J. M., Beller, D. I., Eisenberg, L., Goldman, J., Goldman, M., Goldwasser, E., Ihle, J., Quitans, J., Remold, H., Vogel, S. N., and Fitch, F. W., 1982, Alloreactive cloned T cell lines. VI. Multiple lymphokine activities secreted by helper and cytolytic cloned T lymphocytes, J. Immunol. 129:2337.

    PubMed  CAS  Google Scholar 

  • Roopenian, D. R., and Anderson, P. S., 1988, Generation of helper cell-independent cyto-toxic T lymphocytes is dependent upon L3T4 helper T cells, J. Immunol. 141:391.

    PubMed  CAS  Google Scholar 

  • Roost, H., Charan, S., Gobet, R., Ruedi, E., Hengartner, H., Althage, A., and Zinkernagel, R. M., 1988, An acquired immune suppression in mice caused by infection with lymphocytic choriomeningitis virus, Eur. J. Immunol. 18:511.

    Article  PubMed  CAS  Google Scholar 

  • Rowe, W. P., 1954, Studies on pathogenesis and immunity in lymphocytic choriomeningitis infection of the mouse, Res. Rep. Naval Med. Res. Inst., Bethesda, Md. 12:167.

    Google Scholar 

  • Rowe, W. P., 1956, Protective effect of pre-irradiation on lymphocytic choriomeningitis infection in mice, Proc. Soc. Exp. Biol. Med. 92:194.

    PubMed  CAS  Google Scholar 

  • Rowe, W. P., Black, P. H., and Levey, R. H., 1963, Protective effect of neonatal thymectomy on mouse LCM infection, Proc. Soc. Exp. Biol. Med. 114:248.

    PubMed  CAS  Google Scholar 

  • Schwendemann, G., Lohler, J., and Lehmann-Grube, F., 1983, Evidence for cytotoxic Tlymphocyte—target cell interaction in brains of mice infected with lymphocytic choriomeningitis virus, Acta Neuropathol. 61:183.

    Article  PubMed  CAS  Google Scholar 

  • Serjeantson, S. W., 1983, HLA and susceptibility to leprosy, Immunol. Rev. 70:89.

    Article  PubMed  CAS  Google Scholar 

  • Shearer, G. M., Rehn, T. G., and Schmitt-Verhulst, A. M., 1976, Role of the murine major histocompatibility complex in the specificity of in vitro T cell-mediated lympholysis against chemically-modified autologous lymphocytes, Transplant. Rev. 29:222.

    PubMed  CAS  Google Scholar 

  • Speiser, D. E., and Zinkernagel, R. M., 1990, Thymic MHC class I gene regulation of susceptibility to lymphocytic choriomenigitis, Thymus 16:187.

    PubMed  CAS  Google Scholar 

  • Steinmetz, M., and Hood, L., 1983, Genes of the major histocompatibility complex in mouse and man, Science 222:727.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, P. M., Wraith, D. C., Askonas, B. A., 1985, Control of immune interferon release by cytotoxic T-cell clones specific for influenza, Immunology 54:607.

    PubMed  CAS  Google Scholar 

  • Thomsen, A. R., and Marker, O., 1989a, MHC and non-MHC genes regulate elimination of lymphocytic choriomeningitis virus and antiviral cytotoxic T lymphocyte and delayed-type hypersensitivity mediating T lymphocyte activity in parallel, J. Immunol. 142:1333.

    CAS  Google Scholar 

  • Thomsen, A. R., and Marker, O., 1989b, Class I gene regulation of haplotype preference may influence antiviral immunity in vivo, Cell. Immunol. 122:365.

    Article  CAS  Google Scholar 

  • Thomsen, A. R., Marker, O., and Pfau, C. J., 1987, Different Tc response profiles are associated with survival in the murine lymphocytic choriomeningitis virus infection, Scand. J. Immunol. 25:637.

    Article  PubMed  CAS  Google Scholar 

  • Tiwari, J. L., and Terasaki, P. I., 1985, HLA and Disease Associations, Springer-Verlag, New York.

    Book  Google Scholar 

  • Vidovic, D., and Matzinger, P., 1988, Unresponsiveness to a foreign antigen can be caused by self-tolerance, Nature 336:222.

    Article  PubMed  CAS  Google Scholar 

  • Volkert, M., 1962, Studies on immunological tolerance to LCM virus. A preliminary report on adoptive immunization of virus carrier mice, Acta Pathol. Microbiol. Scand. 56:305.

    Article  PubMed  CAS  Google Scholar 

  • Volkert, M., and Hannover-Larsen, J., 1965, Immunological tolerance to viruses, Prog. Med. Virol. 7:160.

    PubMed  CAS  Google Scholar 

  • Volkert, M., Marker, O., and Bro-Jorgensen, K., 1974, Two populations of T lymphocytes immune to the lymphocytic choriomeningitis virus, J. Exp. Med. 139:1329.

    Article  PubMed  CAS  Google Scholar 

  • Volkert, M., Bro-Jorgensen, K., Marker, O., Rubin, B., and Trier, L., 1975, The activity of T and B lymphocytes in immunity and tolerance to the lymphocytic choriomeningitis virus in mice, Immunology 29:455.

    PubMed  CAS  Google Scholar 

  • Von Boehmer, H., and Haas, W., 1979, Distinct Ir genes for helper and killer cells in the cytotoxic response to H-Y antigens, J. Exp. Med. 150:1134.

    Article  Google Scholar 

  • Welsh, R. M., and Kiessling, R. W., 1980, Natural killer cell response to lymphocytic choriomeningitis virus, Scand. J. Immunol 11:363.

    Article  PubMed  Google Scholar 

  • Zinkemagel, R. M., and Doherty, P. C., 1974, Restriction of in vitro lymphocytic chorio-meningitis within a syngeneic or semiallogeneic system, Nature (Lond.) 248:701.

    Article  Google Scholar 

  • Zinkernagel, R. M., and Doherty, P. C., 1979, MHC-restricted cytotoxic T cells: Studies on the biological role of polymorphic major transplantation antigens determining T cell restriction-specificity, function, and responsiveness, Adv. Immunol. 27:51.

    Article  PubMed  CAS  Google Scholar 

  • Zinkernagel, R. M., and Welsh, R. M., 1976, H-2 compatibility requirements for virus-specific T cell-mediated effector function in vivo. I. Specificity of T cells conferring antiviral protection against lymphocytic choriomeningitis virus is associated with H-2K and H-2D, J. Immunol. 17:1495.

    Google Scholar 

  • Zinkernagel, R. M., Dunlop, M. B. C., Blanden, R. V., and Doherty, P. C., and Shreffler, D. C., 1976, H-2 compatibility requirements for virus-specific T-cell-mediated cytolysis. Evaluation of the role of H-2I region and non-H-2 genes in regulating immune response, J. Exp. Med. 144:519.

    Article  PubMed  CAS  Google Scholar 

  • Zinkernagel, R. M., Althage, A., Cooper, S., Kreeb, G., Klein, P. A., Sefton, B., Flaherty, L., Stimpfling, J., Shreffler, D., and Klein, J., 1978, Ir-genes in H-2 regulate generation of antiviral cytotoxic T cells: Mapping to K or D and dominance of unresponsiveness, J. Exp. Med. 148:592.

    Article  PubMed  CAS  Google Scholar 

  • Zinkernagel, R. M., Pfau, C. J., Hengartner, H., and Althage, A., 1985a, Susceptibility to murine lymphocytic choriomeningitis maps to class I MHC genes—A model for MHC/disease associations, Nature 316:814.

    Article  CAS  Google Scholar 

  • Zinkernagel, R. M., Leist, T., Hengartner, H., and Althage, A., 1985b, Susceptibility to lymphocytic choriomeningitis virus isolates correlates directly with early and high cytotoxic T cell activity, as well as with footpad swelling reaction, and all three are regulated by H-2D, J. Exp. Med. 162:2125.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thomsen, A.R., Pfau, C.J. (1993). Influence of Host Genes on the Outcome of Murine Lymphocytic Choriomeningitis Virus Infection. In: Salvato, M.S. (eds) The Arenaviridae. The Viruses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3028-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3028-2_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6320-0

  • Online ISBN: 978-1-4615-3028-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics