Advertisement

Potential Role of Endosomes in Transmembrane Signaling

  • M. N. Khan
  • W. H. Lai
  • J. W. Burgess
  • B. I. Posner
  • J. J. M. Bergeron
Part of the Subcellular Biochemistry book series (SCBI, volume 19)

Abstract

After ligands bind to their surface receptors on target cells, the ligand-receptor complexes undergo aggregation and internalization. This process of receptormediated endocytosis leads to the concentration of ligand-receptor complexes in a heterogeneous population of tubulovesicular structures that has been distinguished from plasma membrane, lysosomes, and Golgi elements. These structures, now called endosomes, are not clearly characterized by a specific enzyme or protein marker but rather by their unique property to concentrate internalized ligand-receptor complexes. It is widely appreciated that, within endosomes, ligand-receptor complexes are directed toward dissociation and receptor recycling or toward transcytosis, with ligand undergoing degradation in the former situation or transcellular passage in the latter. It has been suggested that, in addition to this sorting function, endosomes play a role in signal transduction.

Keywords

Epidermal Growth Factor Receptor Insulin Receptor Cytoplasmic Domain Transferrin Receptor Endocytic Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajioka, R. S. and Kaplan, J., 1986, Intracellular pools of transferrin receptors result from constitutive internalization of unoccupied receptors, Proc. Natl. Acad. Sci. USA 83: 6445–6449.PubMedGoogle Scholar
  2. Ajioka, R. S. and Kaplan, J., 1987, Characterization of endocytic compartments using the horseradish peroxidase—diaminobenzidine density shift technique, J. Cell Biol. 104: 77–85.PubMedGoogle Scholar
  3. Al-Awqati, Q., 1986, Proton-translocating ATPases, Ann. Rev. Cell Biol. 2: 179–199.PubMedGoogle Scholar
  4. Anderson, R. G. W., Brown, M. S., and Goldstein, J. L., 1977, Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts, Cell 10: 351–364.PubMedGoogle Scholar
  5. Backer, J. M., Kahn, C. R., Cahill, D. A., Ullrich, A., and White, M. F., 1990, Receptor-mediated internalization of insulin requires a 12-amino-acid sequence in the juxtamembrane region of the insulin receptor ß-subunit, J. Biol. Chem. 265: 16450–16454.PubMedGoogle Scholar
  6. Baenziger, J. U. and Fiete, D., 1986, Separation of two populations of endocytic vesicles involved in receptor-ligand sorting in rat hepatocytes, J. Biol. Chem. 261: 7445–7454.PubMedGoogle Scholar
  7. Beardmore, J., Howell, K. E., Miller, K., and Hopkins, C. R., 1987, Isolation of an endocytic compartment from A431 cells using density modification procedure employing a receptor-specific monoclonal and antibody complexed with colloidal gold, J. Cell Sci. 87: 495–506.PubMedGoogle Scholar
  8. Beguinot, L., Hanover, J. A., Ito, S., Richert, N. D., Willingham, M. C., and Pastan, I., 1985, Phorbol esters induce transit internalization without degradation of unoccupied epidermal growth factor receptors, Proc. Natl. Acad. Sci USA 82: 2774–2778.PubMedGoogle Scholar
  9. Bergeron, J. J. M., Evans, W. H., and Geschwind, I. I., 1973, Insulin binding to rat liver Golgi fractions, J. Cell Biol. 59: 771–776.PubMedGoogle Scholar
  10. Bergeron, J. J. M., Sikstrom, R., Hand, A. R., and Posner, B. I., 1979, Binding and uptake of 1251-insulin into rat liver hepatocytes and endothelium: an in vivo radioautographic study, J. Cell Biol. 80: 427–443.PubMedGoogle Scholar
  11. Bergeron, J. J. M., Rachubinski, R., Searle, N., Sikstrom, R., Borts, D., Bastian, P., and Posner, B. I., 1980, Radioautographic visualization of in vivo insulin binding to the exocrine pancreas, Endocrinology 107: 1069–1080.PubMedGoogle Scholar
  12. Bergeron, J. J. M., Resch, L., Rachubinski, R., Patel, B. A., and Posner, B. I., 1983, Effect of colchicine on internalization of prolactin in female rat liver: an in vivo radioautographic study, J. Cell Biol. 96: 875–886.PubMedGoogle Scholar
  13. Bergeron, J. J. M., Cruz, J., Khan, M. N., and Posner, B. I., 1985, Uptake of insulin and other ligands into receptor-rich endocytic components of target cells: the endosomal apparatus, Ann. Rev. Physiol. 47: 383–403.Google Scholar
  14. Bergeron, J. J. M., Searle, N., Khan, M. N., and Posner, B. I., 1986, Differential and analytical subfractionation of rat liver components internalizing insulin and prolactin, Biochemistry 25: 1756–1764.PubMedGoogle Scholar
  15. Braell, W. A., 1987, Fusion between endocytic vesicles in a cell-free system, Proc. Natl. Acad. Sci. USA 84: 1137–1141.PubMedGoogle Scholar
  16. Breitfeld, P. P., Casanova, J. E., McKinnon, W. C., and Mostov, K. E., 1990, Deletions in the cytoplasmic domain of the polymeric immunoglobulin receptor differentially affect endocytotic rate and postendocytotic traffic, J. Biol. Chem. 265: 13750–13757.PubMedGoogle Scholar
  17. Bretscher, M. S., Thomson, J. N., and Pearse, B. M. F., 1980, Coated pits act as molecular filters, Proc. Natl. Acad. Sci. USA 77: 4156–4159.PubMedGoogle Scholar
  18. Brown, M. S., and Goldstein, J. L., 1986, A receptor-mediated pathway for cholesterol homeostasis, Science 232: 34–47.PubMedGoogle Scholar
  19. Burgess, J. W., Wada, I., Ling, N., Khan, M. N., Bergeron, J. J. M., and Posner, B. I., 1992, Decrease in 3-Subunit phosphotyrosine correlates with internalization and activation of the insulin receptor kinase, J. Biol. Chem. 267: 10077–10086.PubMedGoogle Scholar
  20. Cain, C. C., Sipe, D. M., and Murphy, R. F., 1989, Regulation of endocytic pH by the Na+, K+, -ATPase in living cells, Proc. Natl. Acad. Sci. USA 86: 544–548.PubMedGoogle Scholar
  21. Carpentier, J-L., Gorden, P., Anderson, R. G. W., Goldstein, J. L., Brown, M. S., Cohen, S., and Orci, L., 1982, Co-localization of 125I-epidermal growth factor and ferritin-low density lipoprotein in coated pits: a quantitative electron microscopic study in normal and mutant human fibroblasts. J. Cell Biol. 95: 73–77.PubMedGoogle Scholar
  22. Chen, W-J., Goldstein, J. L., and Brown, M. S., 1990, NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor. J. Biol. Chem. 265: 3116–3123.PubMedGoogle Scholar
  23. Cheng, T. P., 1986, Redistribution of cell surface transferrin receptors prior to their concentration in coated pits as revealed by immunoferritin labels, Cell Tissue Res. 244: 613–619.PubMedGoogle Scholar
  24. Chou, C. K., Dull, T. J., Russell, D. S., Gherzi, R., Lebwohl, D., Ullrich, A., and Rosen, O. M., 1987, Human insulin receptors mutated at the ATP-binding site lack protein tyrosine kinase activity and fail to mediate postreceptor effects of insulin, J. Biol. Chem. 262: 1842–1847.PubMedGoogle Scholar
  25. Circirelli, M. F., Tonics, N. K., Diltz, C. D., Weiel, J. E., Fischer, E. H., and Krebs, E. G., 1990, Microinjection of a protein-tyrosine-phosphatase inhibits insulin action in Xenopus oocytes, Proc. Natl. Acad. Sci. USA 87: 5514–5518.Google Scholar
  26. Cohen, S. and Fava, R. A., 1985, Internalization of functional epidermal growth factor: receptor/kinase complexes in A431 cells, J. Biol. Chem. 260: 12351–12358.PubMedGoogle Scholar
  27. Courtoy, P. J., Quintart, J., and Baudhuin, P., 1984, Shift of equilibrium density induced by 3,3’diaminobenzidine cytochemistry: a new procedure for the analysis and purification of peroxidase-containing organelles, J. Cell Biol. 98: 870–876.PubMedGoogle Scholar
  28. Courtoy, P. J., Quintart, J., Limet, J. N., De Roe, C., and Baudhuin, P., 1985, Polymeric IgA and galactose-specific pathways in rat hepatocytes: evidence for intracellular ligand sorting, in Endocytosis ( I. Pastan and M. C. Willingham, eds.), pp. 163–194, Plenum Press, New York.Google Scholar
  29. Davis, C. G., Lehrman, M. A., Russell, D. W., Anderson, R. G. W., Brown, M. S., and Goldstein, J. L. 1986, The J. D. mutation in familial hypercholesterolemia: Amino acid substitution in cytoplasmic domain impedes internalization of LDL receptors, Cell 45: 15–24.PubMedGoogle Scholar
  30. Davis, C. G., van Driel, I. R., Russell, D. W., Brown, M. S., and Goldstein, J. L., 1989, The low density lipoprotein receptor: identification of amino acids in cytoplasmic domain required for rapid endocytosis, J. Biol. Chem. 262: 4075–4082.Google Scholar
  31. Debanne, M. T., Evans, W. H., Flint, N., and Regoeczi, E., 1982, Receptor-rich intracellular membrane vesicles transporting asialotransferrin and insulin in liver, Nature 298: 398–400.PubMedGoogle Scholar
  32. Debant, A., Clauser, E., Ponzio, G., Filloux, C., Auzan, C., Contreres, J. O., and Rossi, B., 1988, Replacement of insulin receptor tyrosine residues 1162 and 1163 does not alter the mitogenic effect of the hormone, Proc. Natl. Acad. Sci. USA 85: 8032–8036.PubMedGoogle Scholar
  33. DeDuve, C. and Wattiaux, R., 1966, Functions of lysosomes, Ann. Rev. Physiol. 28: 435–492.Google Scholar
  34. Diaz, R., Mayorga, L., and Stahl, P., 1988, In vitro fusion of endosomes following receptor-mediated endocytosis, J. Biol. Chem. 263: 6093–6100.Google Scholar
  35. Diaz, R., Mayorga, L. S., Mayorga, L. E., and Stahl, P., 1989, In vitro clustering and multiple fusion among macrophage endosomes, J. Biol. Chem. 264: 13171–13180.Google Scholar
  36. Dickson, R. B., Beguinot, L., Hanover, J. A., Richert, N. D., Willingham, M. C., and Pastan, I., 1983, Isolation and characterization of a highly enriched preparation of receptosomes (endosomes) from a human cell line, Proc. Natl. Acad. Sci. USA 80: 5335–5339.PubMedGoogle Scholar
  37. Diment, S. and Stahl, P., 1985, Macrophage endosomes contain proteases which degrade endocytosed protein ligands, J. Biol. Chem. 260: 15311–15317.PubMedGoogle Scholar
  38. Diment, S., Leech, M. S., and Stahl, P., 1988, Cathepsin D is membrane-associated in macrophage endosomes, J. Biol. Chem. 263: 6901–6907.PubMedGoogle Scholar
  39. Diment, S., Martin, K. J., and Stahl, P. D., 1989, Cleavage of parathyroid hormone in macrophage endosomes illustrates a novel pathway for intracellular processing of proteins, J. Biol. Chem. 264: 13403–13406.PubMedGoogle Scholar
  40. Doherty, J-J. II, Kay, D. G., Lai, W. H., Posner, B. I., and Bergeron, J. J. M., 1990, Selective degradation of insulin within rat liver endosomes, J. Cell Biol. 110: 35–42.PubMedGoogle Scholar
  41. Dunn, W. A., Hubbard, A. L., and Aronson, N. N., 1980, Low temperature selectively inhibits fusion between pinocytic vesicles and lysosomes during heterophage of 125I-asialofetuin by the perfused rat liver, J. Biol. Chem. 255: 5971–5978.PubMedGoogle Scholar
  42. Dunn, W. A., Connolly, T. P., and Hubbard, A. L., 1986, Receptor-mediated endocytosis of epidermal growth factor by rat hepatocytes: receptor pathway, J. Cell Biol. 102: 24–36.PubMedGoogle Scholar
  43. Ebina, Y., Ellis, L., Jarnagin, K., Edery, M., Graf, L., Clauser, E., Ou, J-H., Masiarz, F., Kan, Y. W., Goldfine, I. D., Roth, R. A., and Rutter, W. J., 1985, The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signaling, Cell 40: 747–758.PubMedGoogle Scholar
  44. Ebina, Y., Araki, E., Taira, M., Shimada, F., Mori, M., Craik, C. S., Siddle, K., Pierce, S. A., and Roth, R. A., 1987, Replacement of lysine residue 1030 in the putative ATP-binding region of the insulin receptor abolishes insulin-and antibody-stimulated glucose uptake and receptor kinase activity, Proc. Natl. Acad. Sci. USA. 84: 704–708.PubMedGoogle Scholar
  45. Ehrenreich, J. H., Bergeron, J. J. M., Siekevitz, P., and Palade, G. E., 1973, Golgi fractions prepared from rat liver homogenates: isolation procedure and morphological characterization, J. Cell Biol. 59: 45–72.PubMedGoogle Scholar
  46. Ellis, L., Clauser, E., Morgan, D., Edery, M. Roth, R. A., and Rutter, W. J., 1986, Replacement of insulin receptor tyrosine residues 1162 and 1163 compromises insulin-stimulated kinase activity and uptake of 2-deoxyglucose, Cell 45: 721–732.Google Scholar
  47. Evans, W. H. and Flint, N., 1985, Subfractionation of hepatic endosomes in Nycodenz gradients and by free flow electrophoresis: separation of ligand-transporting and receptor-enriched membranes, Biochem. J. 232: 25–32.PubMedGoogle Scholar
  48. Fan, J. Y., Carpentier, J-L., Gorden, P., Van Obberghen, E., Blackett, N. M., Grunfeld, C., and Orci, L., 1982, Receptor-mediated endocytosis of insulin: role of microvilli, coated pits, and coated vesicles, Proc. Natl. Acad. Sci. USA 79: 7788–7791.PubMedGoogle Scholar
  49. Faure, R., Baquiran, G., Bergeron, J. J. M., and Posner, B. I., 1992, The dephosphorylation of insulin and epidermal growth factor receptors: Role of endosome-associated phosphotyrosin phosphatase(s), J. Biol. Chem. 267: 11215–11221.PubMedGoogle Scholar
  50. Felder, S., Miller, K., Moehren, G., Ullrich, A., Schlessinger, J., and Hopkins, C. R., 1990, Kinase activity controls the sorting of the epidermal growth factor receptor within the multivesicular body, Cell 61: 623–634.PubMedGoogle Scholar
  51. Fuchs, R., Schmid, S., and Mellman, I., 1989a, A possible role for Nat K+-ATPase in regulating ATP-dependent endosome acidification, Proc. Natl. Acad. Sci. USA 86: 539–543.PubMedGoogle Scholar
  52. Fuchs, R., Mâle, P., and Mellman, I., 1989b, Acidification and ion permeabilities of highly purified rat liver endosomes, J. Biol. Chem. 264: 2212–2220.PubMedGoogle Scholar
  53. Galloway, C. J., Dean, G. E., Marsh, M., Rudnick, G., and Mellman, I., 1983, Acidification of macrophage and fibroblast endocytic vesicles in vitro, Proc. Natl. Acad. Sci. USA 80: 3334–3338.PubMedGoogle Scholar
  54. Geuze, H., Slot, J. W., Strous, G. J. A. M., Lodish, H. F., and Scwartz, A. L., 1982, Immunocytochemical localization of the receptor for asialoglycoprotein in rat liver cells, J. Cell Biol. 92: 865–870.PubMedGoogle Scholar
  55. Geuze, H. J., Slot, J. W., Strous, G. J. A. M., Lodish, H. F., and Schwartz, A. L., 1983a, Intracellular site of asialoglycoprotein receptor-ligand uncoupling: double-label immunoelectron microscopy during receptor-mediated endocytosis, Cell 32: 277–287.PubMedGoogle Scholar
  56. Geuze, H. J., Slot, J. W., Strous, G. J. A. M., and Schwartz, A. L., 1983b, The pathway of the asialoglycoprotein-ligand during receptor-mediated endocytosis: a morphological study with colloidal gold/ligand in the human hepatoma cell line, Hep G2, Eur. J. Cell Biol. 32: 38–44.PubMedGoogle Scholar
  57. Goldstein, J. L., Brown, M. S., Anderson, R. G., Russell, D. W., and Schneider, W. J., 1985, Receptor-mediated endocytosis: concepts emerging from the LDL receptor system, Annu. Rev. Cell Biol. 1: 1–39.PubMedGoogle Scholar
  58. Gorden, P., Carpenter, J-L., Freychette, P., and Orci, L., 1980, Internalization of polypeptide hormone, Diabatologia 18: 263–274.Google Scholar
  59. Gruenberg, J. and Howell, K. E., 1987, An internalized transmembrane protein resides in a fusion-competent endosome for less than 5 minutes, Proc. Natl. Acad. Sci. USA 84: 5758–5762.PubMedGoogle Scholar
  60. Gruenberg, J., Griffiths, G., and Howell, K. E., 1989, Characterization of the early endosome and putative endocytic carrier vesicles in vivo and with an assay of vesicle fusion in vitro, J. Cell Biol. 108: 1301–1316.PubMedGoogle Scholar
  61. Hamel, F. G., Posner, B. I., Bergeron, J. J. M., Frank, B. H., and Duckworth, W. C., 1988, Isolation of insulin degradation products from endosomes derived from intact rat liver, J. Biol. Chem. 263: 6703–6708.PubMedGoogle Scholar
  62. Handley, D. A., Arbeeney, C. M., Witte, L. D., and Chien, S., 1981, Colloidal gold—low density lipoprotein conjugates as membrane receptor probes, Proc. Natl. Acad. Sci. USA 78: 368–371.PubMedGoogle Scholar
  63. Harding, C., Heuser, J., and Stahl, P., 1984, Endocytosis and intracellular processing of transfemn and colloidal gold—transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding, Eur. J. Cell Biol. 35: 256–263.PubMedGoogle Scholar
  64. Han, J. and Roth, R. A., 1987, Defective internalization of insulin and its receptor in cells expressing mutated insulin receptors lacking kinase activity, J. Biol. Chem. 262: 15341–15344.Google Scholar
  65. Helenius, A., Mellman, I., Wall, D., and Hubbard, A., 1983, Endosomes, Trends Biochem. Sci. 8: 245–250.Google Scholar
  66. Honegger, A. M., Dull, T. J., Felder, S., Van Obberghen, E., Bellot, F., Szapary, D., Schmidt, A., Ullrich, A., and Schlessinger, J., 1987, Point mutation at the ATP binding site of EGF receptor abolishes protein-tyrosine kinase activity and alters cellular routing, Cell 51: 199–209.PubMedGoogle Scholar
  67. Hopkins, C. R., 1983, Intracellular routing of transferrin and transferrin receptors in epidermoid carcinoma A431 cells, Cell 35: 321–330.PubMedGoogle Scholar
  68. Hopkins, C. R., 1985, The appearance and internalization of transferrin receptors at the margins of spreading human tumor cells, Cell 40: 199–208.PubMedGoogle Scholar
  69. Hopkins, C. R., Gibson, A., Shipman, M., and Miller, K., 1990, Movement of internalized ligand-receptor complexes along a continuous endosomal reticulum, Nature 346: 335–339.PubMedGoogle Scholar
  70. Janicot, M., Clot, J. P., and Desbuquois, B., 1988, Interactions of cholera toxin with isolated hepatocytes: effects of low pH, chloroquine and monensin on toxin internalization, processing and action, Biochem. J. 253: 735–743.PubMedGoogle Scholar
  71. Josefsberg, Z., Posner, B. I., Patel, B., and Bergeron, J. J. M., 1979, The uptake or prolactin into female rat liver: concentration of intact hormone in the Golgi apparatus, J. Biol. Chem. 254: 209–214.PubMedGoogle Scholar
  72. Kadota, S., Fantus, I. G., Deragon, G., Guyda, H., Hersh, B., and Posner, B. I., 1987a, Peroxide(s) of vanadium is a novel and potent insulin-mimetic agent which activates the insulin receptor kinase, Biochem. Biophys. Res. Commun. 147: 259–266.PubMedGoogle Scholar
  73. Kadota, S., Fantus, I. G., Deragon, G., Guyda, H., and Posner, B. I., 1987b, Stimulation of insulin-like growth factor II receptor binding and insulin receptor kinase activity in rat adipocytes: effects of vanadate and H2O2, J. Biol. Chem. 262: 8252–8256.PubMedGoogle Scholar
  74. Kay, D. G., Khan, M. N., Posner, B. I., and Bergeron, J. J. M., 1984, ln vivo uptake of insulin into hepatic Golgi fractions: application of the diaminobenzidine-shift protocol, Biochem. Biophys. Res. Commun. 123: 1144–1148.Google Scholar
  75. Kay, D. G., Lai, W. H., Uchihashi, M., Khan, M. N., Posner, B. I., and Bergeron, J. J. M., 1986, Epidermal growth factor receptor kinase translocation and activation in vivo, J. Biol. Chem. 261: 8473–8480.PubMedGoogle Scholar
  76. Khan, M. N., Posner, B. I., Verma, A. K., Khan, R. J., and Bergeron, J. J. M., 1981, Intracellular hormone receptors: evidence for insulin and lactogen receptors in a unique vesicle sedimenting in lysosome fractions of rat liver, Proc. Natl. Acad. Sci. USA. 78: 4980–4984.PubMedGoogle Scholar
  77. Khan, M. N., Posner, 13. I., Khan, R. J., and Bergeron, J. J. M., 1982, Internalization of insulin into rat liver Golgi elements: evidence for vesicle heterogeneity and the path of intracellular processing, J. Biol. Chem. 257: 5969–5976.Google Scholar
  78. Khan, M. N., Savoie, S., Bergeron, J. J. M., and Posner, B. I., 1985, Insulin and insulin receptor uptake into rat liver: evidence for site of chloroquine action on receptor recycling, Diabetes. 34: 1025–1030.PubMedGoogle Scholar
  79. Khan, M. N., Savoie, S., Bergeron, J. J. M., and Posner, B. I., 1986a, Differential kinetics and sensitivity to chloroquine of receptor-mediated insulin and prolactin endocytosis in liver parenchymal cells, Biochim. Biophys. Acta. 888: 100–106.PubMedGoogle Scholar
  80. Khan, M. N., Savoie, S., Bergeron, J. J. M., and Posner, B. I., 1986b, Characterization of rat liver endosomal fractions: in vivo activation of insulin stimulable receptor kinase in these structures, J. Biol. Chem. 261: 8462–8472.PubMedGoogle Scholar
  81. Khan, M. N., Baquiran, G., Brule, C., Burgess, J., Foster, B., Bergeron, J. J. M., and Posner, B. I., 1989, Internalization and activation of the rat liver insulin receptor kinase in vivo, J. Biol. Chem. 264: 12931–12940.PubMedGoogle Scholar
  82. Khan, R. J., Khan, M. N., Bergeron, J. J. M., and Posner, B. I., 1985, Prolactin uptake into liver endocytic components: reduced sensitivity to chloroquine, Biochim. Biophys. Acta. 838: 7783.Google Scholar
  83. Kielian, M. C., Marsh, M., and Helenius, A., 1986, Kinetics of endosome acidification detected by mutant and wild type Semliki forest virus, EMBO J. 5: 3103–3109.PubMedGoogle Scholar
  84. Kindberg, G. M., Ford, T., Blomhoff, R., Rickwood, D., and Berg, T., 1984, Separation of endocytic vesicles in nycodenz gradients, Anal. Biochem. 142: 455–462.PubMedGoogle Scholar
  85. Klausner, R. D., Ashwell, G., van Renswoude, J., Harford, J. B., and Bridges, K. R., 1983, Binding of apotransferrin to K562 cells: explanation of the transferrin cycle, Proc. Natl. Acad. Sci. USA 80: 2263–2266.PubMedGoogle Scholar
  86. Klein, H. H., Friedenberg, G. R., Kladde, M., and Olefsky, J. M., 1986, Insulin activation of insulin receptor tyrosine kinase in intact rat adipocytes: an in vitro system to measure histone kinase activity of insulin receptors activated in vivo, J. Biol. Chem. 261: 4691–4697.PubMedGoogle Scholar
  87. Lai, W. H., Cameron, P. H., Wada, I., Doherty, J-J. II, Kay, D. G., Posner, B. I., and Bergeron, J. J. M., 1989a, Ligand mediated internalization, recycling, and down regulation of the epidermal growth factor receptor in vivo, J. Cell Biol. 109: 2741–2749.PubMedGoogle Scholar
  88. Lai, W. H., Cameron, P. H., Doherty, J-J. II, Posner, B. I., and Bergeron, J. J. M., 1989b, Ligand mediated autophosphorylation activity of the EGF receptor during internalization, J. Cell Biol. 109: 2751–2760.PubMedGoogle Scholar
  89. Lazarovits, J. and Roth, M., 1988, A single amino acid change in the cytoplasmic domain allows the influenza virus hemagglutinin to be endocytosed through coated pits, Cell 53: 743–752.PubMedGoogle Scholar
  90. Lehrman, M. A., Goldstein, J. L., Brown, M. S., Russell, D. W., and Schneider, W. J., 1985, Internalization-defective LDL receptors produced by genes with nonsense and frameshift mutations that truncate the cytoplasmic domain, Cell 41: 735–743.PubMedGoogle Scholar
  91. Leighton, F., Poole, B., Beaufay, H., Baudhuin, P., Coffey, J. W., Folwer, S., and DeDuve, C., 1968, The large-scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with Triton WR-1339, J. Cell Biol. 37: 482–513.PubMedGoogle Scholar
  92. Lobel, P., Fujimoto, K., Ye, R. D., Griffiths, G., and Kornfeld, S., 1989, Mutations in the cytoplasmic domain of the 275 Kd mannose-6-phosphate receptor differentially alter lysosomal enzyme sorting and endocytosis, Cell 57: 787–796.PubMedGoogle Scholar
  93. Maegawa, H., McClain, D. A., Freidenberg, G., Olefsky, J. M., Napier, M., Lipari, T., Dull, T. J., Lee, J., and Ullrich, A., 1988, Properties of a human insulin receptor with a COOH-terminal truncation, J. Biol. Chem. 263: 8912–8917.PubMedGoogle Scholar
  94. Mailer, J. L., Pike, L. J., Freidenberg, G. R., Cordera, R., Stith, B. J., Olefsky, J. M., and Krebs, E. G., 1986, Increased phosphorylation of ribosomal protein S6 following microinjection of insulin receptor-kinase into Xenopus oocytes, Nature (London) 320: 459–461.Google Scholar
  95. Marsh, M., Schmid, S. L., Kern, H., Harms, E., Male, P., Mellman, I., and Helenius, A., 1987, Rapid analytical and preparative isolation of functional endosomes by free flow electrophoresis, J. Cell Biol. 104: 875–886.PubMedGoogle Scholar
  96. Maxfield, F. R., Schlessinger, J., Schechter, Y., Pastan, I., and Willingham, M. C., 1978, Collection of insulin, EGF, and a2-macroglobulin in the same patches on the surface of cultured fibroblasts and common internalization, J. Cell Biol. 14: 805–810.Google Scholar
  97. McClain, D. A., Maegawa, H., Lee, J., Dull, T. J., Ullrich, A., and Olefsky, J. M., 1987, A mutant insulin receptor with defective tyrosine kinase displays no biologic activity and does not undergo endocytosis, J. Biol. Chem. 262: 14663–14671.PubMedGoogle Scholar
  98. McKanna, J. A., Haigler, H. T., and Cohen, S., 1979, Hormone receptor topology and dynamics: morphological analysis using ferritin-labeled epidermal growth factor, Proc. Natl. Acad. Sci. USA 76: 5689–5693.PubMedGoogle Scholar
  99. Mellman, I. S., Steinman, R. M., Unkeless, J. C., and Cohn, Z. A., 1980, Selective iodination and polypeptide composition of pinocytic vesicles, J. Cell Biol. 86: 712–722.PubMedGoogle Scholar
  100. Mellman, I., Fuchs, R., and Helenius, A., 1986, Acidification of the endocytic and exocytic pathways, Ann. Rev. Biochem. 55: 663–700.PubMedGoogle Scholar
  101. Merton, M., Schlesinger, P., Brooks, R. M., Moering, J. M., Moering, T. J., and Sly, W. S., 1983, Defective acidification of endosomes in Chinese hamster ovary cell mutants “cross-resistant” to toxins and viruses, Proc. Natl. Acad, Sci. USA 80: 5315–5319.Google Scholar
  102. Merlon, M. and Sly, W. S., 1983, The role of intermediate vesicles in the adsorptive endocytosis and transport of ligand to lysosomes by human fibroblasts, J. Cell Biol. 96: 644–650.Google Scholar
  103. Morgan, D. A., Ho, L., Korn, L. J., and Roth, R. A., 1986, Insulin action is blocked by a monoclonal antibody that inhibits the insulin receptor kinase, Proc. Natl. Acad. Sci. USA 83: 328–332.PubMedGoogle Scholar
  104. Morgan, D. A. and Roth, R. A., 1987, Acute insulin action requires insulin receptor kinase activity: introduction of an inhibitory monoclonal antibody into mammalian cells blocks the rapid effects of insulin, Proc. Natl. Acad. Sci. USA 84: 41–45.PubMedGoogle Scholar
  105. Mostov, K. E., de Bruyn Kops, A., and Deitcher, D. L., 1986, Deletion of the cytoplasmic domain of the polymeric immunoglobulin receptor prevents basolateral localization) and endocytosis, Cell 47: 359–364.PubMedGoogle Scholar
  106. Mullock, B. M., Luzio, J. P., and Hinton, R. H., 1983, Preparation of a low-density species of endocytic vesicle containing immunoglobulin A, Biochem. J. 214: 823–827.PubMedGoogle Scholar
  107. Bullock, B. M., Hinton, R. H., Peppard, J. V., Slots, J. W., and Luzio, J. P., 1987, The preparative isolation of endosome fractions: a review, Cell Biochem. Function 5: 235–243.Google Scholar
  108. Mullock, B. M., Branch, W. J., van Schaik, M., Gilbert, L. K., and Luzio, J. P., 1989, Reconstitution of an endosome-lysosome interaction in a cell-free system. J. Cell Biol. 108: 2093–2099.PubMedGoogle Scholar
  109. Murphy, R. F., Powers, S., and Cantor, C. R., 1984, Endosome pH measured in single cells by dual fluorescence flow cytometry: rapid acidification of insulin to pH 6, J. Cell Biol. 98: 1757–1762.PubMedGoogle Scholar
  110. Mustelin, T., Coggeshall, K. M., and Altman, A., 1989, Rapid activation of the T-cell tyrosine protein kinase pp561c1c by the CD45 phosphotyrosine phosphatase, Proc. Natl. Acad. Sci. USA 86: 6302–6306.PubMedGoogle Scholar
  111. Okada, M. and Nakagawa, H., 1989, A protein tyrosine kinase involved in regulation of pp60c-src function, J. Biol. Chem. 264: 20886–20893.PubMedGoogle Scholar
  112. Okamoto, M., Karasik, A., White, M. F., and Kahn, C. R., 1991, Coordinate phosphorylation of insulin-receptor kinase and its 175,000-Mr endogenous substrate in rat hepatocytes. Diabetes 40: 66–72.PubMedGoogle Scholar
  113. Pastan, I. H., and Willingham, M. C., 1981, Journey to the center of the cell: role of the receptosome, Science 214: 504–509.PubMedGoogle Scholar
  114. Pease, R. J., Smith, G. D., and Peters, T. J., 1985, Degradation of endocytosed insulin in rat liver is mediated by low-density vesicles, Biochem. J. 228: 137–146.PubMedGoogle Scholar
  115. Pilch, P. F., Shia, M. A., Benson, R. J. J., and Fine, R. E., 1983, Coated vesicles participate in the receptor-mediated endocytosis of insulin, J. Cell Biol. 96: 133–138.PubMedGoogle Scholar
  116. Posner, B. I., Patel, B., Verma, A. K., and Bergeron, J. J. M., 1980, Uptake of insulin by plasmalemma and Golgi subcellular fractions of rat liver, J. Biol. Chem. 255: 735–741.PubMedGoogle Scholar
  117. Posner, B. I., Bergeron, J. J. M., Josefsberg, Z., Khan, M. N., Khan, R. J., Patel, B. A., Sikstrom, R. A., and Verma, A. K., 1981, Intracellular receptors and internalization, Rec. Prog. Horm. Res. 37: 539–579.PubMedGoogle Scholar
  118. Posner, B. I., Khan, M. N., and Bergeron, J. J. M., 1982a, Endocytosis of peptide hormones and other ligands, Endocrine Reviews 3: 280–298.PubMedGoogle Scholar
  119. Posner, B. I., Patel, B. A., Khan, M. N., and Bergeron, J. J. M., 1982b, Effect of chloroquine on the internalization of [1251]insulin into subcellular fractions of rat liver: evidence of an effect of chloroquine on Golgi elements, J. Biol. Chem. 257: 5789–5799.PubMedGoogle Scholar
  120. Posner, B. I., Khan, M. N., and Bergeron, J. J. M., 1985, Receptor-mediated uptake of peptide hormones and other ligands, in: Polypeptide Hormone Receptors, ( Posner, B. I., ed.), pp. 6190, Marcel Dekker, New York.Google Scholar
  121. Posner, B. I., Khan, M. N., and Bergeron, J. J. M., 1987, Internalization of insulin and its receptor: role in signaling, in Insulin, Insulin-like Growth Factors and Their Receptors in the Central Nervous System ( M. K. Raizada, M. I. Philips, and D. Leroith, eds.), pp. 1–10, Plenum Press, New York.Google Scholar
  122. Pricer, W. E. and Ashwell, G., 1976, Subcellular distribution of a mammalian hepatic binding protein specific for asialoglycoproteins, J. Biol. Chem. 251: 7539–7544.PubMedGoogle Scholar
  123. Prywes, R., Livnch, E., Ullrich, A., and Schlessinger, J., 1986, Mutations in the cytoplasmic domain of EGFR affect EGF binding and receptor internalization, EMBO J. 5: 2179–2190.PubMedGoogle Scholar
  124. Quintart, J., Courtoy, P., Limet, J., and Baudhuin, P., 1983, Galactose-specific endocytosis in rat liver: biochemical and morphological characterization of a low-density compartment isolated from hepatocytes, Eur. J. Biochem. 131: 105–112.PubMedGoogle Scholar
  125. Roederer, M., Bowser, R., and Murphy, R. F., 1987, Kinetics and temperature dependence of exposure of endocytosed material to proteolytic enzymes and low pH: evidence for a maturation model for the formation of lysosomes, J. Cell Physiol. 131: 200–209.PubMedGoogle Scholar
  126. Rosen, O. M., Herrera, R., Olowe, Y., Petruzzelli, L. M., Cobb, M. H., 1983, Phosphorylation activates the insulin receptor tyrosine protein kinase, Proc. Natl. Acad. Sci. USA 80: 32373240.Google Scholar
  127. Roth, T. F. and Porter, K. R., 1964, Yolk protein uptake in the oocyte of the mosquito aedes aegypti.L., J. Cell Biol., 64: 313–332.Google Scholar
  128. Rothenberger, S., Iacopetta, B. J., and Kühn, L. C., 1987, Endocytosis of the transferrin receptor requires the cytoplasmic domain but not its phosphorylation site. Cell 49: 423–431.PubMedGoogle Scholar
  129. Russell, D. S., Gherzi, R., Johnson, E. L., Chou, C-K., and Rosen, O. M., 1987, The protein-tyrosine kinase activity of the insulin receptor is necessary for insulin-mediated receptor down-regulation, J. Biol. Chem. 262: 11833–11840.PubMedGoogle Scholar
  130. Schaudies, R. P., Gorman, R. M., Savage, C. R., and Portez, R. D., 1987, Proteolytic processing of epidermal growth factor within endosomes, Biochem. Biophys. Res. Commun. 143: 710–715.PubMedGoogle Scholar
  131. Schmid, S. L., Fuchs, R., Male, P., and Mellman, I., 1988, Two distinct subpopulations of endosomes involved in membrane recycling and transport to lysosomes, Cell 52: 73–83.PubMedGoogle Scholar
  132. Schmid, S., Fuchs, R., Kielian, M., Helenius, A., and Mellman, I., 1989, Acidification of endosome subpopulations in wild-type Chinese hamster ovary cells and temperature-sensitive acidification-defective mutants, J. Cell Biol. 108: 1291–1300.PubMedGoogle Scholar
  133. Shoelson, S. E., White, M. F., and Kahn, C. R., 1988, Tryptic activation of the insulin receptor, J. Biol. Chem. 263: 4852–4860.PubMedGoogle Scholar
  134. Smith, C. D. and Peters, T. J., 1982, Localization in rat liver of alkaline phosphodiesterase to a discrete organelle implicated in ligand internalization, Biochim. Biophys. Acta 716: 24–30.PubMedGoogle Scholar
  135. Smith, R. M. and Jarett, L., 1983, Quantitative ultrastructural analysis of receptor-mediated insulin uptake into adipocytes, J. Cell Physiol. 115: 199–207.PubMedGoogle Scholar
  136. Stahl, P., Schlessinger, P., Sigardson, L., Rodman, J. S., and Lee, Y. C., 1980, Receptor-mediated pinocytosis of mannose glycoconjugates by macrophages: characterization and evidence for receptor recycling, Cell 19: 207–215.PubMedGoogle Scholar
  137. Stochern, W. and Wohlfarth-Botterman, K. E., 1969, Tinocytosis (Endocytosis), in Handbook of Molecular Cytology ( A. Lima-de-Faria, ed.), pp. 1373–1400, Elsevier, North Holland, Amsterdam.Google Scholar
  138. Stoorvogel, W., Geuze, H. J., and Strous, G. J., 1987, Sorting of endocytosed transferrin and asialoglycoprotein occurs immediately after internalization in Hep G2 cells, J. Cell Biol. 104: 1261–1268.PubMedGoogle Scholar
  139. Stoorvogel, W., Geuze, H. J., Griffith, J. M., Schwartz, A. L., and Strous, G. J., 1989, Relations between the intracellular pathways of the receptors for transferrin, asialoglycoprotein, and mannose-6-phosphate in human hepatoma cells, J. Cell Biol. 108: 2137–2148.PubMedGoogle Scholar
  140. Storrie, B., Deeson, T. D., and Maurey, K., 1981, Rapid cell surface appearance of endocytic membrane proteins in Chinese hamster ovary cells, Mol. Cell. Biol. 1: 261–268.PubMedGoogle Scholar
  141. Straus, W., 1964, Occurrence of phagosomes and phago-lysosomes in different segments of the nephron in relation to the reabsorption, transport, digestion, and extrusion of intravenously injected horseradish peroxidase, J. Cell Biol. 21: 295–308.PubMedGoogle Scholar
  142. Tamura, S., Brown, T. A., Whipple, J. H., Yamaguchi, Y. F., Dubler, R. E., Cheng, K., and Lanier, J., 1984, A novel mechanism for the insulin-like effect of vanadate on glycogen synthase in rat adipocytes, J. Biol. Chem. 259: 6650–6658.PubMedGoogle Scholar
  143. Thies, R. S., Webster, N. J., and McClain, D. A., 1990, A domain of the insulin receptor required for endocytosis in rat fibroblasts, J. Biol. Chem. 265: 10132–10137.PubMedGoogle Scholar
  144. Tycko, B. and Maxfield, F. R., 1982, Rapid acidification of endocytic vesicles containing a2macroglobulin, Cell 28: 643–651.PubMedGoogle Scholar
  145. Ullrich, B., Bell, J. R., Chen, E. Y., Herrera, R., Petruzzelli, L. M., Dull, T. J., Gray, A., Coussens, L., Liao, Y-C., Tsubokawa, M., Mason, A., Seeburg, P. H., Grunfeld, C., Rosen, O. M., and Ramachandran, J., 1985, Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes, Nature (Lond.), 313: 756–761.Google Scholar
  146. Van Renswoude, J., Bridges, K. R., Harford, J. B., and Klausner, R. D., 1982, Receptor-mediated endocytosis of transferrin and the uptake of Fe in K562 cells: identification of a nonlysosomal acidic compartment, Proc. Natl. Acad. Sci. USA 79: 6186–6190.PubMedGoogle Scholar
  147. Via, D. P., Willingham, M. C., Pastan, I. H., Gotto, A. M., Smith, L. C., 1982, Co-clustering and internalization of low-density lipoproteins and a2-macroglobulin in human skin fibroblasts, Exp. Cell Res. 141: 15–22.PubMedGoogle Scholar
  148. Wada, I., Lai, W. H., Posner, B. I., and Bergeron, J. J. M., 1992, Association of the tyrosine phosphorylated epidermal growth tactor receptor with a 55-kDa tyrosine phosphorylated protein at the cell surface and in endosomes, J. Cell Biol. 116: 321–330.PubMedGoogle Scholar
  149. Wall, D. A., Wilson, G., and Hubbard, A. L., 1980, The galactose-specific recognition system of mammalian liver: the route of ligand internalization in rat hepatocytes, Cell 21: 79–93.PubMedGoogle Scholar
  150. Wall, D. A. and Hubbard, A. L., 1981, Galactose-specific recognition system of mammalian liver: receptor distribution on the hepatocyte cell-surface, J. Cell Biol. 90: 687–696.PubMedGoogle Scholar
  151. Wall, D. A. and Hubbard, A. L., 1984, Receptor-mediated endocytosis of asialoglycoproteins by rat liver hepatocytes: biochemical characterization of the endosomal compartments, J. Cell Biol. 101: 2104–2112.Google Scholar
  152. Walsh, R. J., Posner, B. I., and Patel, B., 1984, Binding and uptake of [125I]Iodoprolactin by epithelial cells of the rat choroid plexus: an in vivo autoradiographic analysis, Endocrinology 114: 1496–1505.PubMedGoogle Scholar
  153. Ward, D. M., Ajioka, R., and Kaplan, J., 1989, Cohort movement of different ligands and receptors in the intracellular endocytic pathway of alveolar macrophages, J. Biol. Chem. 264: 8164–8170.PubMedGoogle Scholar
  154. Watts, C., 1984, In situ 125I-labeling of endosome proteins with lactoperoxidase conjugates, EMBO J. 3: 1965–1970.PubMedGoogle Scholar
  155. White, M. F., Shoelson, S. E., Keutmann, H., and Kahn, C. R., 1988a, A cascade of tyrosine autophosphorylation in the 3-subunit activates the phosphotransferase of the insulin receptor, J. Biol. Chem. 263: 2969–2980.PubMedGoogle Scholar
  156. White, M. F., Livingston, J. N., Backer, J. M., Lauris, V., Dull, T. J., Ullrich, A., and Kahn, C. R., 1988b, Mutation of the insulin receptor at tyrosine 960 inhibits signal transmission but does not affect its tyrosine kinase activity, Cell 54: 641–649.PubMedGoogle Scholar
  157. White, M. F., 1991, Structure and function of tyrosine kinase receptors, J. Bioenerg. Biomembr. 23: 63–82.PubMedGoogle Scholar
  158. Wilden, P. A., Backer, J. M., Kahn, C. R., Cahill, D. A., Schroeder, G. J., and White, M. F., 1990, The insulin receptor with phenylalanine replacing tyrosine-1146 provides evidence for separate signals regulating cellular metabolism and growth, Proc. Natl. Acad. Sci. USA 87: 3358–3362.PubMedGoogle Scholar
  159. Wileman, T., Harding, C., and Stahl, P., 1985, Receptor-mediated endocytosis, Biochem. J. 232: 114.Google Scholar
  160. Wiley, H. S., VanNostrand, W., McKinley, D. N., and Cummingham, D. D., 1985, Intracellular processing of epidermal growth factor and its effect on ligand-receptor interactions, J. Biol. Chem. 260: 5290–5295.PubMedGoogle Scholar
  161. Willingham, M. C. and Pastan, I., 1980, The receptosomes: an intermediate organelle of receptor-mediated endocytosis in cultured fibroblasts, Cell 21: 67–77.PubMedGoogle Scholar
  162. Willingham, M. C., Pastan, I. H., Sahagian, G. G., Jourdian, G. W., and Neufeld, E. F., 1981, Morphologic study of the internalization of a lysosomal enzyme by the mannose-6-phosphate receptor in cultured Chinese hamster ovary cells, Proc. Natl. Acad. Sci. USA 78: 6967–6971.PubMedGoogle Scholar
  163. Wolkoff, A. W., Klausner, R. D., Ashwell, G., and Harford, J., 1984, Intracellular segregation of asialoglycoproteins and their receptor: a prelysosomal event subsequent to dissociation of the ligand receptor complex, J. Cell Biol. 98: 375–381.PubMedGoogle Scholar
  164. Yu, K-T. and Czech, M. P., 1986, Tyrosine phosphorylation of insulin receptor 0-subunit activates the receptor-tyrosine kinase in intact H-35 hepatoma cells, J. Biol. Chem. 261: 4715–4722.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • M. N. Khan
    • 1
  • W. H. Lai
    • 1
  • J. W. Burgess
    • 1
  • B. I. Posner
    • 2
  • J. J. M. Bergeron
    • 1
  1. 1.Department of AnatomyMcGill UniversityMontrealCanada
  2. 2.Department of MedicineMcGill UniversityMontrealCanada

Personalised recommendations