Advertisement

The Endocytic Compartments of Normal and Regenerating Liver

  • Carlos Enrich
  • W. Howard Evans
Part of the Subcellular Biochemistry book series (SCBI, volume 19)

Abstract

The liver is pivotally positioned to remove a wide range of molecules circulating in the blood, thereby acting as a key organ in the regulation of blood composition. The basolateral plasma membrane, especially the blood-facing sinusoidal domain of the hepatocyte, contains a large number of various receptors that account for the liver’s ability to selectively and efficiently endocytose and metabolize a variety of ligands (see Table I). Endocytotic uptake of ligands from the blood circulating in the space of Disse is a multistep process. Receptor-ligand complexes assembled at coated regions and probably also at morphologically undifferentiated regions of the plasma membrane are internalized within minutes to a membrane-bound compartment described variously as compartment for uncoupling of receptors and ligands (CURL), receptosomes, diacytosomes, endosomes, prelysosomal compartment, and so forth. In this chapter we will use the composite term endocytic compartment to describe the complex membrane networks present in all animal cells where the intracellular sorting of internalized ligands and receptors occurs. Subcellular fractions prepared from liver homogenates and composed largely of membrane vesicles originating from the endocytic compartment will be termed endosomes.

Keywords

Late Endosome Liver Plasma Membrane Asialoglycoprotein Receptor Endocytic Compartment Lateral Plasma Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahluwalia, J. P., Doherty, J. J., Troulis, M., Posner, B. I., and Bergeron, J. J. M., 1988, Identification of antigen(s) specific to a “late” endosome fraction, in Cell-Free Analysis of Membrane Traffic, ( D. J. Morré, K. E. Howell, G. M. W. Cook, and W. H. Evans, eds.) pp. 411–415. Alan R. Liss, Inc., New York.Google Scholar
  2. Ali, N., and Evans, W. H., 1990a, Distribution of polypeptides binding guanosine 5y 35S-thiolltriphosphate and anti-(ras proteins) antibodies in liver subcellular fractions. Evident for endosome-specific components, Biochem. J. 271: 179–183.PubMedGoogle Scholar
  3. Ali, N. and Evans, W. H., 1990b, Priority targeting of glycosyl-phosphatidylinositol anchored proteins to the bile canalicular (apical) plasma membrane of hepatocyte. Involvement of “late” endosomes, Biochem. J. 271: 193–199.PubMedGoogle Scholar
  4. Ali, N., Milligan, G., and Evans, W. H., 1989a, Distribution of G-proteins in rat liver plasma membrane domains and endocytic pathways, Biochem. J. 261: 905–912.PubMedGoogle Scholar
  5. Ali, N., Milligan, G., and Evans, W. H., 1989b, G-proteins of rat liver membranes. Subcellular compartmentation and disposition in the plasma membrane, Molec. Cellular Biochem. 91: 7584.Google Scholar
  6. Ali, N., Aligué, R., and Evans, W. H., 1990, Highly purified vesicles and plasma membranes isolated from rat liver on Nycodenz gradients, Biochem J. 271: 185–192.PubMedGoogle Scholar
  7. Ashcom, J. D., Tiller, S. E., Dickerson, K., Cravens, J. L., Argraves, W. S., and Strickland, D. K., 1990, A human a2-macroglobulin receptor: identification of a 420-kD cell surface glycoprotein specific for the activated conformation of a2-macroglobulin, J. Cell. Biol. 110: 1041–1048.PubMedGoogle Scholar
  8. Ashwell, G. and Morell, A. G., 1974, The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins, Adv. Enzymol. 41: 99–128.PubMedGoogle Scholar
  9. Baenziger, J. U. and Fiete, D., 1986, Separation of two populations of endocytic vesicles involved in receptor-ligand sorting in rat hepatocytes, J. Biol. Chem. 261: 7445–7454.PubMedGoogle Scholar
  10. Bartles, J. R., Zhang, L. Q., Verheyen, E. M., Hospodar, K. S., Nehme, C. L., and Fayos, B. E., 1990, Decreases in the relative concentrations of specific hepatocyte plasma membrane proteins during liver regeneration: down regulation or dilution? Develop. Biol. 143: 258–270.Google Scholar
  11. Belcher, J. D., Hamilton, R. L., Brady, S. E., Hornick, C. A., Jaeckle, S., Schneider, W. J., and Havel, R. J., 1987, Isolation and characterization of three endosomal fractions from the liver of estradiol-treated rats, Proc. Natl. Acad. Sci. USA 84: 6785–6789.PubMedGoogle Scholar
  12. Bergeron, J. J. M., Resch, L., Rachubinski, R., Patel, B. A., and Posner, B. I., 1983, Effect of colchicine in internalization of prolactin in female rat liver: an in vivo radioautographic study, J. Cell Biol. 96: 875–886.PubMedGoogle Scholar
  13. Bergeron, J. J. M., Cruz, J., Khan, M. N., and Posner, B. I., 1985, Uptake of insulin and other ligands into receptor-rich endocytic components of target cells: the endosomal apparatus, Ann. Rev. Physiol. 47: 383–403.Google Scholar
  14. Blouin, A., Bolender, R. P., and Weigel, E. R., 1977, Distribution of organelles and membranes between hepatocytes and non-hepatocytes in the rat liver parenchyma. A stereological study, J. Cell Biol. 72: 441–455.PubMedGoogle Scholar
  15. Buchse!, R., Berger, D., and Reutter, W., 1980, Routes of fucoproteins in plasma membrane domains, FEBS Lett 113: 95–98.Google Scholar
  16. Burke, B., Griffiths, G., Reggio, H., Louvard, D., and Warren, G., 1982, A monoclonal antibody against a 135-kD Golgi membrane protein, EMBO Journal 1: 1621–1628.PubMedGoogle Scholar
  17. Carnal’, B., Keppens, S., de Wulf., and Jand, S., 1980, 3H-vasopressin binding to isolated rat hepatocytes and liver membranes. Regulation by GTP and relation to glycogen phosphorylase activation, J. Receptor Res. 1: 137–168.Google Scholar
  18. Carrella, M. and Cooper, A. D., 1979, High affinity binding of chylomicron remnants to rat liver plasma membranes, Proc. Natl. Acad. Sci. USA 76: 338–342.PubMedGoogle Scholar
  19. Casey, C. A., Kragskow, S. L., Sorrell, M. F., and Tuma, D. J., 1987, Chronic ethanol administration impairs the binding and endocytosis of asialo-orosomucoid in isolated hepatocytes, J. Biol. Chem. 262: 2704–2710.PubMedGoogle Scholar
  20. Chao, Y-S., Jones, A. L., Hradek, G. T., et al., 1981, Autoradiographic localization of the sites of uptake, cellular transport and catabolism of low density lipoproteins in the liver of normal and estrogen-treated rats, Proc. Natl. Acad. Sci. USA 78: 597–601.PubMedGoogle Scholar
  21. Chavrier, P., Parton, R. G., Hauri, H. P., Simons, K., and Zerial, M., 1990, Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments, Cell 62: 317–329.PubMedGoogle Scholar
  22. Courtoy, P. J., Quintart, J., and Baudhiun, P., 1984, Shift of equilibrium density induced by 3,3’diaminobenzidine cytochemistry: a new method for the analysis and purification of peroxidasecontaining organelles, J. Cell Biol. 98: 870–876.PubMedGoogle Scholar
  23. Courtoy, P. J., Quintart, J., Limet, J. N., de Roe, C., and Baudhiun, P., 1985, Polymeric IgA and galactose-specific pathways in rat hepatocytes: evidences for intracellular ligand sorting, in Endocytosis ( I. Pastan and M. C. Willingham, eds.) pp. 163–194, Plenum Press, New York and London.Google Scholar
  24. Debanne, M. T., Evans, W. H., Flint, N., and Regoeczi, E., 1982, Receptor-rich intracellular membrane vesicles transporting asialotransferrin and insulin in liver, Nature 298: 398–400.PubMedGoogle Scholar
  25. Duncan, J. R. and Kornfeld, S., 1988, Intracellular movement of the two mannose-6-phosphate receptors: return to the Golgi apparatus, J. Cell Biol. 106: 617–628.PubMedGoogle Scholar
  26. Dunn, W. A., Connolly, T. P., and Hubbard, A. L., 1986, Receptor-mediated endocytosis of epidermal growth factor by rat hepatocytes: receptor pathway, J. Cell. Biol. 102: 24–36.PubMedGoogle Scholar
  27. El-Refau, M. F., Blackmore, P. F., and Exton, J. H., 1979, Evidence for 2 a-adrenergic binding sites in liver plasma membranes. Studies with 3H-epinephrine and 3H-dihydroergocryptone, J. Biol. Chem. 254: 4375–4386.Google Scholar
  28. Enrich, C. and Evans, W. H, 1987, Evidence for a role of the hepatic endocytic compartment in the modulation of the extracellular matrix, Exp. Cell Res. 173: 99–108.PubMedGoogle Scholar
  29. Enrich, C. and Evans, W. H., 1989a, Antibodies to hepatic endosomes. Identification of two endosome antigens. Europ. J. Cell Biol. 48: 344–352.PubMedGoogle Scholar
  30. Enrich, C. and Evans, W. H., 1989b, Calcium and calmodulin-binding proteins of liver endosomal and plasma membrane fractions, in Biochemical Approaches to Cellular Calcium. Methodological Surveys in Biochemistry and Analysis, Vol. 19, (E. Reid, G. M. W. Cook, and J. P. Luzio, Eds.) pp. 53–58. The Royal Society of Chemistry.Google Scholar
  31. Enrich, C., Bachs, O., and Evans, W. H., 1988, A 115 kDa calmodulin-binding protein is located in rat liver endosome fractions, Biochem. J. 255: 999–1005.PubMedGoogle Scholar
  32. Enrich, C., Jones, G. R., Bordas, J., and Evans, W. H., 1989, A 220 kDa polypeptide immunolocalised to epithelial tight junctions is associated with brain clathrin preparations, Eur. J. Cell Biol. 50: 304–312.PubMedGoogle Scholar
  33. Enrich, C., Tabona, P., and Evans, W. H., 1990, A two-dimensional electrophoretic analysis of the proteins and glycoproteins of liver plasma membrane domains and endosomes. Implications for endocytosis and transcytosis, Biochem. J. 271: 171–178.PubMedGoogle Scholar
  34. Enrich, C., Vergés, M., and Evans, W. H., 1992, Differential expression of asialoglycoprotein receptor subunits in the endocytic compartment during liver regeneration, J. Cell. Physiol. 150: 344–352.PubMedGoogle Scholar
  35. Eriksson, L. C. and Andersson, G. N., 1992, Membrane biochemistry and chemical hepatocarcinogenesis, Critical Revs. in Biochem. and Molec. Biol. 27:1–55.Google Scholar
  36. Evans, W. H., 1981, Membrane traffic at the hepatocyte’s sinusoidal and canalicular surface domains, Hepatology. 5: 452–457.Google Scholar
  37. Evans, W. H. and Ali, N., 1991, Subcellular distribution of trimeric and low molecular weight G-proteins in liver, in Cell Signalling: Experimental Strategies ( E. Reid, G. M. W. Cook, and J. P. Luzio, eds.) pp. 423–428. Royal Society of Chemistry, London.Google Scholar
  38. Evans, W. H. and Enrich, C., 1989, Liver plasma membrane domains and endocytic trafficking, Biochem. Soc. Trans. 17: 619–622.PubMedGoogle Scholar
  39. Evans, W. H. and Flint, N., 1985, Subfractionation of hepatic endosomes in Nycodenz gradients and by free flow electrophoresis. Separation of ligand-transporting and receptor-enriched membranes, Biochem. J. 232: 25–32.PubMedGoogle Scholar
  40. Evans, W. H. and Hardison, W. G. M., 1985, Phospholipid, cholesterol, polypeptide and glycoprotein composition of hepatic endosome subfractions. Biochem. J. 232: 33–36.PubMedGoogle Scholar
  41. Evans, W. H., Flint, N., and Vischer, P., 1980, Biogenesis of membrane domains. Incorporation of [3H] fucose into plasma membrane and Golgi apparatus glycoproteins, Biochem. J. 192: 903–910.PubMedGoogle Scholar
  42. Fisher, M. M., Nagy, B., Bazin, H., and Underdown, B. J., 1979, Biliary transport of IgA: role of secretory component, Proc. Natl. Acad. Sci. USA. 76: 2008–2012.PubMedGoogle Scholar
  43. Forsberg, E., Paulsson, M., Timpl, R., and Johansson, S., 1990, Characterization of a laminin receptor on rat hepatocytes, J. Biol. Chem. 265: 6376–6381.PubMedGoogle Scholar
  44. Fouchereau-Peron, M., Broer, M., and Rosselin, G., 1980, Growth hormone and insulin binding to isolated hepatocytes in the genetically dwarf mouse, Biochem. Biophys. Acta 631: 451–462.PubMedGoogle Scholar
  45. Frommel, D. and Rachman, F., 1979, Receptor for the Fc portion of IgG on the plasma membrane of hepatocyte. Ann. Immunol. (Paris) 130c: 553–560.Google Scholar
  46. Fuchs, R., Male, P., and Mellman, I., 1989, Acidification and ion permeabilities of highly purified rat liver endosomes, J. Biol. Chem. 264: 2212–2220PubMedGoogle Scholar
  47. Geisow, M. J. and Evans, W. H., 1984, pH in the endosome, Exp. Cell Res. 150: 36–46.Google Scholar
  48. Geuze, H. J., Slot, J. W., Strous, G. J. A. M., Lodish, H. F., and Schwartz, A. L., 1983, Intracellular site of asialoglycoprotein receptor-ligand uncoupling: double-label immunoelectron microscopy during receptor-mediated endocytosis, Cell 32: 277–287.PubMedGoogle Scholar
  49. Geuze, H. J., Slot, J. W., Strous, G. J. A. M., Peppard, J., von Figura, K., Hasilik, A., and Schwartz, A. L., 1984, Intracellular receptor sorting during endocytosis: comparative immunoelectron microscopy of multiple receptors in rat liver. Cell 37: 195–204.PubMedGoogle Scholar
  50. Geuze, H. J., Slot, J. W., and Schwartz, A. L., 1987, Membranes of sorting organelles display lateral heterogenicity in receptor distribution, J. Cell Biol. 104: 1715–1723.PubMedGoogle Scholar
  51. Gharbi, J. and Torresani, J., 1979, High affinity thyroxine binding to purified rat liver plasma membranes, Biochem. Biophys. Res. Commun. 88: 170–177.PubMedGoogle Scholar
  52. Goldenberg, H., Seelos, C., Chatwani, S., and Pumm, R., 1990, Uptake and endocytic pathways of transferrin and iron in perfused rat liver. Biochim. Biophys. Acta. 1067: 145–152.Google Scholar
  53. Gruenberg, J. and Howell, K. E., 1989, Membrane traffic in endocytosis: insights from cell-free systems. Ann. Rev. Cell Biol. 5: 453–481.PubMedGoogle Scholar
  54. Hadjiivanova, N., Flint, N., Evans, W. H., Dix, C., and Cooke, B. A., 1984, Endocytosis of ßadrenergic ligands by rat liver, Biochem. J. 222: 749–754.PubMedGoogle Scholar
  55. Hopf, U., Schaefer, H. E., Hess, G. and Meyer Zum Büschenfelde, K. H., 1981, In vivo uptake of immune complexes by parenchymal and nonparenchymal liver cells in mice, Gastroenterology 80: 250–259.Google Scholar
  56. Hopkins, C. R., Gibson, A., Shipman, M., and Miller, K., 1990, Movement of internalized ligand-receptor complexes along a continuous endosomal reticulum. Nature 346: 335–339.PubMedGoogle Scholar
  57. Hubbard, A. L., Stieger, B., and Baffles, J. R., 1989, Biogenesis of endogenous plasma membrane proteins in epithelial cells, Ann. Rev. Physiol. 51: 755–770.Google Scholar
  58. Huber, B. E., Glowinski, I. B., and Thorgeisson, S. S., 1986, Transcriptional and post-transcriptional regulation of the asialoglycoprotein receptor in normal and neoplastic rat liver, J. Biol. Chem. 261: 12400–12407.PubMedGoogle Scholar
  59. Ishihara, M., Fedarko, N. S., and Conrad, H. E., 1986, Transport of heparan sulphate into nuclei of hepatocytes, J. Biol. Chem. 261: 13575–13580.PubMedGoogle Scholar
  60. Jäckle, S., Runquist, E., Brady, S., Hamilton, R. L., and Havel, R. J., 1991a, Isolation and characterisation of three endosomal fractions from the liver of normal rats after lipoprotein loading, J. Lipid Res. 32: 485–498.PubMedGoogle Scholar
  61. Jäckle, S., Runquist, E. A., Miranda-Brody, S., and Havel, R. J., 1991b, Trafficking of the epidermal growth factor receptor and transferrin in three hepatocyte endosomal fractions, J. Biol. Chem. 266: 1396–1402.PubMedGoogle Scholar
  62. Johansson, S., Forsberg, E., and Lundgren, B., 1987, Comparison of fibronectin receptors from rat hepatocytes and fibroblasts, J. Biol. Chem. 262: 7819–7824.PubMedGoogle Scholar
  63. Jones, A. L. and Burwen, S. J., 1985, Hepatic receptors and their ligands: problems of intracellular sorting and vectorial movement, Sem. Liver Dis. 5: 136–146.Google Scholar
  64. Kino, K., lbsnoo, H., Higa, Y., Takami, M., Hamagushi, H., and Nakajima, H., 1980, Hemoglobin-haptoglobin receptor in rat liver plasma membranes. J. Biol. Chem. 255: 9616–9620.PubMedGoogle Scholar
  65. Klausner, R. D., 1989, Sorting and traffic in the central vacuolar system, Cell 57: 703–706.PubMedGoogle Scholar
  66. Kouyoumdjian, M., Borges, D. R., Prado, E. S., and Prado, J. L., 1989, Identification of receptors in the liver that mediate endocytosis of circulating tissue kallikreins. Biochim. Biophys. Acta. 980: 299–304.PubMedGoogle Scholar
  67. Levy, D. and von Dieppe, P., 1989, Identification of bile acid transport protein in hepatocyte sinusoidal plasma membranes, Methods Enzymol. 174: 25–31.PubMedGoogle Scholar
  68. Lippincott-Schwartz, J. and Fambrough, D. M., 1987, Cycling of the integral glycoprotein LEP100, between plasma membrane and lysosomes: kinetic and morphological analysis, Cell 49: 669677.Google Scholar
  69. Lisanti, M. P., Rodriguez-Boulan, E., and Saltiel, A. R., 1990, Emerging functional roles for GP-1 membrane protein anchor, J. Membrane Biol. 113: 155–167.Google Scholar
  70. Lisanti, M. P. and Rodriguez-Boulan, E., 1991, Polarized sorting of GP-1 linked proteins in epithelial and membrane microdomains, Cell Biol. Mt. Rep. 15: 1023–1049.Google Scholar
  71. Luzio, J. P. and Stanley, K. K., 1983, The isolation of endosome-derived vesicles from rat hepatocytes, Biochem. J. 216: 27–36.PubMedGoogle Scholar
  72. Marsh, M., Griffiths, G., Dean, G. E., Mellman, I., and Helenius, A., 1986, Three-dimensional structure of endosomes in BHK-21 cells. Proc. Natl. Acad. Sci. USA 83: 2899–2903.PubMedGoogle Scholar
  73. Mayorga, L. S., Diaz, R., Colombo, M. I., and Stahl, P. D., 1989, GTPyS stimulation of endosome fusion suggests a role for a GTP-binding protein in the priming of vesicles before fusion, Cell Regulation 1: 113–124.PubMedGoogle Scholar
  74. Mead, J. E. and Fausto, N., 1989, Transforming growth factor a may be a physiological regulator of liver regeneration by means of an autocrine mechanism, Proc. Natl. Acad. Sci. USA 86: 1558–1562.PubMedGoogle Scholar
  75. Michalopoulos, G. K., 1990, Liver regeneration: molecular mechanisms of growth control, FASEB Journal 4: 176–187.PubMedGoogle Scholar
  76. Mullock, B. M., Jones, R. S., and Hinton, R. H., 1980, Movement of endocytic shuttle vesicles from the sinusoidal to the bile canalicular face of hepatocytes does not depend on occupation of receptor sites, FEBS. Lett. 113: 201–205.PubMedGoogle Scholar
  77. Nakamura, T., Nishizawa, T., Hagiya, M., Seki, T., Shimonishi, M., Sugimura, A., Tashiro, K., and Shimizu, S., 1989, Molecular cloning and expression of human hepatocyte growth factor, Nature 342: 440–443.PubMedGoogle Scholar
  78. Neuman, W. F. and Schneider, N., 1980, The parathyroid hormone-sensitive adenylate cyclase system in plasma membranes of rat liver, Endocrinology 107: 2082–2087.PubMedGoogle Scholar
  79. Nexo, E. and Hollenberg, M. D., 1980, Characterization of the particulate and soluble receptor for transcobalamin II from human placenta and rabbit liver. Biochim. Biophys. Acta. 628: 190–200.PubMedGoogle Scholar
  80. O’Farrell, P. H., 1975, High resolution two-dimensional electrophoresis of proteins, J. Biol. Chem. 250: 4407–4021.Google Scholar
  81. Oka, Y and Czech, M. P., 1986, The type II insulin-like growth factor receptor is internalized and recycles in the absence of ligand, J. Biol. Chem. 261: 9090–9093.PubMedGoogle Scholar
  82. Okamura, N. and Terayama, H., 1977, Prostaglandin receptor-adenylate cyclase system in plasma membranes of rat liver and ascites hepatomas, and the effect of GTP upon it, Biochim. Biophys. Acta. 465: 54–67.PubMedGoogle Scholar
  83. Owensby, D. A., Sobel, B. E., and Schwartz, A. L., 1988, Receptor-mediated endocytosis of tissue-type plasminogen activator by the human hepatoma cell line Hep G2, J. Biol. Chem. 263: 10587–10594.PubMedGoogle Scholar
  84. Pietras, R. J. and Szego, C. M., 1980, Partial purification and characterization of estrogen receptors in subfractions and hepatocyte plasma membranes. Biochem. J. 191: 743–760.PubMedGoogle Scholar
  85. Quintart, J., Courtoy, P. J., and Baudhiun, P., 1984, Receptor-mediated endocytosis in rat liver, and enzymic characterization of low density organelles involved in the uptake of galactose-exposing proteins, J. Cell Biol. 98: 877–884.PubMedGoogle Scholar
  86. Quintart, J., Baudhuin, P., and Courtoy, P. J., 1989, Marker enzymes in rat liver vesicles involved in transcellular transport, Eur. J. Biochem. 184: 567–574.PubMedGoogle Scholar
  87. Raub, T. J. and Kuentzel, S. L., 1989, Kinetic of morphological evidence for endocytosis of mammalian cell integrin receptors by using an anti-fibronectin receptor 13-subunit monoclonal antibody, Exp. Cell Res. 184: 407–426.PubMedGoogle Scholar
  88. Regoeczi, E., Chindemi, P. A., Debanne, M. T., and Charlwood, P. A., 1982, Partial resialylaton of human asialoglycoprotein type 3 in the rat. Proc. Natl. Acad. Sci. 79: 2226–2230.PubMedGoogle Scholar
  89. Renaud, G., Foliot, A., and Infante, R., 1978, Increased uptake of fatty acids by the isolated rat liver after raising the fatty acid binding protein concentration with clofibrate, Biochem. Biophys. Res. Commun. 80: 327–334.PubMedGoogle Scholar
  90. Runquist, E. A. and Havel, R. J., 1991, Acid hydrolase in early and late endosome fractions from rat liver, J. Biol. Chem. 266: 22557–22563.PubMedGoogle Scholar
  91. Saermark, T., Flint, N., and Evans, W. H., 1985, Hepatic endosome fractions contain an ATP-driven proton pump, Biochem. J. 225: 51–58.PubMedGoogle Scholar
  92. Shears, S. B., Evans, W. H., Kirk, C. J., and Michell, R. H., 1988, Preferential localization of rat liver D-myo-inositol 1,4,5-triphosphate/1,3,4,5-tetrakisphosphate 5-phosphatase in bile-canalicular plasma membrane and “late” endosomal vesicles, Biochem. J. 256: 363–369.PubMedGoogle Scholar
  93. Smedsrod, B., Paulsson, M., and Johannsson, S., 1989, Uptake and degradation in vivo and in vitro of laminin and nidogen by rat liver cells, Biochem. J. 261: 37–42.PubMedGoogle Scholar
  94. Snider, M. D. and Rogers, O. C., 1985, Intracellular movement of cell surface receptors after endocytosis. resialylation of asialotransferrin receptor in human erythroleukemia cells, J. Cell. Biol. 100: 826–834.PubMedGoogle Scholar
  95. Sperling, M. A., Ganguli, S., Voina, S., Kaptein, V. E., and Nicoloff, J. T., 1980, Modulation by thyroid status of the glucagon receptor adenyl cyclase system in rat liver plasma membrane, Endocrinology 107: 684–690.PubMedGoogle Scholar
  96. Spiess, M., 1990, The asialoglycoprotein receptor: a model for endocytic transport receptors, Biochemistry 29: 10009–10018.PubMedGoogle Scholar
  97. Steer, C. J. and Clarenburg, R., 1979, Unique distribution of glycoprotein receptors on parenchymal and sinusoidal cells of rat liver, J. Biol. Chem. 254: 4457–4461.PubMedGoogle Scholar
  98. Stocked, R. J. and Morell, A. G., 1990, Second messenger modulation of asialoglycoprotein receptor, J. Biol. Chem. 265: 1841–1846.Google Scholar
  99. Strong, P. N. and Evans, W. H., 1987, Receptor-mediated endocytosis of apamin by liver cells, Eur. J. Biochem. 163: 267–273.PubMedGoogle Scholar
  100. Tauber, R., Park, C-S., and Reuter, W., 1983, Structural carbohydrates from liver and hepatoma, in Structural Carbohydrates in the Liver: Falk Symposium 34, ( H. Popper, W. Reutter, F. Gudat, and E. Kotgen, eds.) pp. 333–347. MTP Press, Lancaster, United Kingdom.Google Scholar
  101. Thomas, P., 1980, Studies on the mechanisms of biliary excretion of circulating glycoproteins, Biochem. J. 192: 837–843.PubMedGoogle Scholar
  102. Traub, L. M., Evans, W. H., and Sagi-Eisenberg, R., 1990, A novel 100dKa protein, located to receptor enriched endosomes, is immunologically related to the signal transducing guaninenucleotide-binding proteins Gt and G,, Biochem J. 272: 453–458.PubMedGoogle Scholar
  103. Traub, L. M., Shai, E., and Sagi-Eisenberg, R., 1991, Characterization of the interaction between p100, a novel G-protein-related protein, and rat liver endosomes. Biochem. J. 280: 171–178.PubMedGoogle Scholar
  104. Tuma, D. J. and Sorrell, M. F., 1988, Effects of ethanol on protein trafficking in the liver, Sem. Liver Disease 8: 69–80.Google Scholar
  105. Warren, G., 1985, Membrane traffic and organelle division, Trends in Biochem. Sci. 11: 439–443.Google Scholar
  106. Warren, G., Davust, J., and Cockroft, A., 1984, Recycling of transferrin receptors in A431 cells is inhibited during mitosis, EMBO Journal 3: 2217–2225.PubMedGoogle Scholar
  107. Whetton, A. D., Hauslay, M. D., Dodd, N. J. F., and Evans. W. H., 1983, The lipid fluidity of plasma membrane, endocytic, and Golgi apparatus subfractions isolated from rat liver, Biochem. J. 214: 851–854.PubMedGoogle Scholar
  108. Willingham, M. C., and Pastan, I., 1985, An Atlas of Immunofluorescence in Cultured Cells, Academic Press, New York.Google Scholar
  109. Wisse, E., 1977, Ultrastructure and function of Kupffer cells and other sinusoidal cells in the liver, in Kupffer Cells and other Liver Sinusoidal Cells ( E. Wisse and D. L. Knook, eds.) pp. 33–60, Elsevier/North-Holland Biomedical Press, Amsterdam.Google Scholar
  110. Wolkoff, A. W. and Chung, C. T., 1980, Identification, purification and partial characterization of an organic anion binding protein from rat liver cell plasma membrane, J. Clin. Invest. 65: 1152–1161.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Carlos Enrich
    • 1
  • W. Howard Evans
    • 2
  1. 1.Departmento de Biologia Celular, Facultad MedicinaUniversitat de BarcelonaSpain
  2. 2.National Institute for Medical ResearchLondonUK

Personalised recommendations