Advertisement

Characterization of Endocytic Components of Liver Nonparenchymal Cells

  • Robert Wattiaux
  • Michel Jadot
  • Sandra Misquith
  • Simone Wattiaux-de Coninck
Part of the Subcellular Biochemistry book series (SCBI, volume 19)

Abstract

Liver is made up of at least five important cell types: hepatocytes, endothelial cells, Kupffer cells, pit cells, and fat-storing cells. These cells have been broadly classified into two groups: parenchymal cells, or the hepatocytes which comprise almost 65% of the liver cells (Miyai, 1979), and nonparenchymal cells, to which all the other cell types belong.

Keywords

Lysosomal Enzyme Sucrose Gradient Nonparenchymal Cell Sinusoidal Cell Relative Specific Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achord, D. T., Brot, F. E., and Sly, W. S., 1977, Inhibition of the rat clearance system for agalactoorosomucoid by yeast mannans and by mannose, Biochem. Biophys. Res. Commun. 77: 409–415.PubMedCrossRefGoogle Scholar
  2. Arborgh, B., Berg, T., and Ericsson, J. L. E., 1973, Quantitation of acid phosphatase and arylsulfatase in rat hepatic parenchymal and Kupffer cells. FEBS Leu., 35: 51–53.CrossRefGoogle Scholar
  3. Ashwell, G. and Morell, A. G., 1974, The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins, Adv. in Enzymol. 41:99–128.Google Scholar
  4. Baenziger, J. U. and Fiete, D., 1986, Separation of two populations of endocytic vesicles involved in receptor-ligand sorting in rat hepatocytes, J. Biol. Chem. 261: 7445–7454.PubMedGoogle Scholar
  5. Berg, T., Kindberg, G. M., Ford, T., and Blomhoff, R., 1985, Intracellular transport of asialoglycoproteins in rat hepatocytes, Exp. Cell Res. 161: 285–296.PubMedCrossRefGoogle Scholar
  6. Bloomhoff, R., Eskild, W., and Berg, T., 1984a, Endocytosis of formaldehyde-treated bovine serum albumin via scavenger pathway in liver endothelial cells, Biochem. J. 218: 81–86.Google Scholar
  7. Blouin, A., 1977, Morphometry of liver sinusoidal cells, in Kupffer Cells and Other Liver Sinusoidal Cells. ( E. Wisse and D. L. Knook, eds.) pp. 61–71, Elsevier, New York.Google Scholar
  8. Brown, W. J., Goodhouse, J., and Farquhar, M. G., 1986, Mannose-6-phosphate receptors for lysosomal enzymes cycle between the Golgi complex and endosomes, J. Cell Biol. 103: 1235–1247.PubMedCrossRefGoogle Scholar
  9. Clarke, B. L., and Weigel, P. H., 1985, Recycling of the asialoglycoprotein receptor in isolated rat hepatocytes, J. Biol. Chem. 260: 128–133.PubMedGoogle Scholar
  10. De Bruyn, P. P. H., Cho, Y., and Michelson, S., 1983a, In vivo endocytosis by bristle coated pits of protein tracers and their intracellular transport in the endothelial cells lining the sinuses of the liver. I. The endosomal disposition, J. Ultrastruct. Res. 85: 272–289.Google Scholar
  11. De Bruyn, P. P. H., Cho, Y., and Michelson, S., 1983b, In vivo endocytosis by bristle coated pits of protein tracers and their intracellular transport in the endothelial cells lining the sinuses of the liver. II. The endosomal-lysosomal transformation. J. Ultrastruct. Res. 85: 290–299.Google Scholar
  12. De Meyts, P. and Hanoune, J., 1982, Plasma membrane receptors and function, in The Liver: Biology and Pathobiology, (I. Arias, H. Popper, D. Schachter, and D. A. Schafritz, eds.) pp. 551–580, Raven Press, New York.Google Scholar
  13. Diment, S., and Stahl, P., 1985, Macrophage endosomes contain proteases which degrade endocytosed protein ligands, J. Biol. Chem. 260: 15311–15317.PubMedGoogle Scholar
  14. Diment, S., Leech, M. S., and Stahl, P., 1988, Cathepsin D is membrane-associated in macrophage endosomes, J. Biol. Chem. 263: 6901–6907.PubMedGoogle Scholar
  15. Duncan, J. R., and Kornfeld, S., 1988, Intracellular movement of two mannose-6-phosphate receptors: return to the Golgi apparatus, J. Cell Biol. 106: 617–628.PubMedCrossRefGoogle Scholar
  16. England, I. G., Naess, L., Blomhoff, R., and Berg, T., 1986, Uptake, intracellular transport, and release of [125I]-Poly(vinylpyrrolidone) and [14C]-sucrose-asialofetuin in rat liver parenchymal cells, Biochem. Pharma. 35: 201–208.CrossRefGoogle Scholar
  17. Evans, W. H. and Flint, N., 1985, Subfractionation of hepatic endosomes in Nycodenz gradients and by free flow electrophoresis, Biochem. J. 232: 25–32.PubMedGoogle Scholar
  18. Fisher, H. D., Gonzalez-Noriega, A., Sly, W. S., and Morre, D. J., 1980, Phosphomannosylenzyme receptors in rat liver, J. Biol. Chem. 255: 9608–9615.Google Scholar
  19. Geuze, H. J., Slot, W. J., and Strous, G. J. A. M., 1983, Intracellular site of asialoglycoprotein receptor-ligand uncoupling: double label immunoelectron microscopy during receptor mediated endocytosis, Cell 32: 277–287.PubMedCrossRefGoogle Scholar
  20. Geuze, H. J., Slot, J. W., Strous, G. J. A. M., Hasilik, A., and Von Figura, K., 1984, Ultrastructural localization of the mannose-6-phosphate receptor in rat liver, J. Cell Biol. 98: 2047–2054.Google Scholar
  21. Griffiths, G., Hoflack, B., Simons, K., Mellman, I., and Kornfeld, S., 1988, The mannose-6-phosphate receptor and the biogenesis of lysosomes, Cell 52: 329–341.PubMedCrossRefGoogle Scholar
  22. Haltiwanger, R. S., Lehrman, M. A., Eckhardt, A. E., and Hill, R. L., 1986, The distribution and localization of the fucose-binding lectin in rat tissues and the identification of a high affinity form of the mannose N-acetylglucosamine-binding lectin in rat liver, J. Biol. Chem. 261: 7433–7439.PubMedGoogle Scholar
  23. Hamel, F. G., Posner, B. I., Bergeron, J., Frank, B., and Duckworth, W., 1988, Isolation of insulin degradation products from endosomes derived from intact rat liver, J. Biol. Chem. 263: 6703–6708.PubMedGoogle Scholar
  24. Horiuchi, S., Takata, K., Maeda, H., and Morino, Y. 1985, Scavenger function of sinusoidal liver cells, J. Biol. Chem. 259: 53–56.Google Scholar
  25. Hubbard, A. L., Wilson, G., Ashwell, G., and Stukenbrok, H., 1979, An electron microscope autoradiographic study of the carbohydrate recognition systems in rat liver I. Distribution of 125I-ligands among the liver cell types, J. Cell Biol. 83: 47–64.PubMedCrossRefGoogle Scholar
  26. Hubbard, A. L., and Stukenbrok, H., 1979, An electron microscope autoradiographic study of the carbohydrate recognition systems in rat liver. II. intracellular fate of 125I-ligands, J. Cell Biol. 83: 65–81.PubMedCrossRefGoogle Scholar
  27. Hubbard, A. L., 1989, Endocytosis, Current Opinion in Cell Biology, 1: 615–616.CrossRefGoogle Scholar
  28. Jadot, M., Colmant, C., Wattiaux-De Coninck, S., and Wattiaux, R., 1984, Intralysosomal hydrolysis of glycyl-L-phenylalanine 2-Naphthylamide, Biochem. J. 219: 965–970.PubMedGoogle Scholar
  29. Jadot, M. and Wattiaux, R., 1985, Effect of glycyl-Lphenylalanine-2-naphthylamide on invertase endocytosed by rat liver, Biochem. J. 225: 645–648.PubMedGoogle Scholar
  30. Jadot, M., Wattiaux-De Coninck, S., and Wattiaux, R., 1985, Effect on lysosomes of invertase endocytosed by rat liver, Eur. J. Biochem. 151: 485–488.PubMedCrossRefGoogle Scholar
  31. Jadot, M., Misquith, S., Dubois, F., Wattiaux-De Coninck, S., and Wattiaux, R., 1986, Intracellular pathway followed by invertase endocytosed by rat liver, Eur. J. Biochem. 161: 695–700.PubMedCrossRefGoogle Scholar
  32. Jost-Vu, E., Hamilton, R. L., Hornick, C. A., Belcher, J. D., and Havel, R. J., 1986, Multivesicular bodies isolated from rat hepatocytes, Histochemistry 85: 457–466.PubMedCrossRefGoogle Scholar
  33. Kempka, G. and Kolb-Bachofen, V., 1985, Galactose-specific receptors on liver cei s. I. Hepatocyte and liver macrophage receptors differ in their membrane anchorage, Biochim. b’ophys. Acta. 847: 108–114.CrossRefGoogle Scholar
  34. Knook, D. L., 1974, Distribution of lysosomal enzyme activities between parenchymal and non-parenchymal cells from rat liver, Hoppe Seyler’s Physiol. Chem. 255: 1217–1219.Google Scholar
  35. Kornfeld, S. and Mellman, I., 1989, The biogenesis of lysosomes, Annu. Rev. Cell Biol. 5: 483–525.PubMedCrossRefGoogle Scholar
  36. Lehrman, M. A. and Hill, R. L., 1986, The binding of fucose-containing glycoproteins by hepatic lectins—Purification of a fucose-binding lectin from rat liver, J. Biol. Chem. 261: 7419–7425.PubMedGoogle Scholar
  37. Lehrman, M. A., Pizzo, S. V., Imber, M. J., and Hill, R. L., 1986a, The binding of fucosecontaining glycoproteins by hepatic lectins—Re-examination of the clearance from blood and the binding to membrane receptors and pure lectins, J. Biol. Chem. 261: 7412–7418.PubMedGoogle Scholar
  38. Lehrman, M. A., Haltiwanger, R. S., and Hill, R. L., 19866, The binding of fucose-containing glycoproteins by hepatic lectins—The binding specificity of the rat liver fucose lectin. J. Biol. Chem. 261: 7426–7432.Google Scholar
  39. Madnick, H. M., Winckler, J. R., and Segal, H. L., 1978, Uptake of yeast invertase by rat liver cells in vivo and in vitro. Arch. Biochem. Biophys. 191: 385–392.CrossRefGoogle Scholar
  40. Marsh, M., Schmid, S., Kern, H., Harms, E., Male, P., Mellman, I., and Helenius, A., 1987, Rapid analytical and preparative isolation of functional endosomes by free flow electrophoresis, J. Cell Biol. 104: 875–886.PubMedCrossRefGoogle Scholar
  41. Mego, J. L., 1984, Role of thiols, pH and cathepsin D in the lysosomal catabolism of serum albumin, Biochem. J. 218: 775–783.PubMedGoogle Scholar
  42. Misquith, S., Wattiaux-De Conick, S., and Wattiaux, R., 1988, Uptake and intracellular transport in rat liver of formaldehyde-treated bovine serum albumin labeled with 125I-1-tyramine-cellobiose, Eur. J. Biochem. 174: 691–697.PubMedCrossRefGoogle Scholar
  43. Misquith, S., Wattiaux-De Coninck, S., and Wattiaux, R., 1989, Intracellular degradation by liver endothelial cells, Mol. Cell. Biochem. 91: 63–74.PubMedCrossRefGoogle Scholar
  44. Miyai, K., 1979, Ultrastructural basis for toxic liver injury, in Toxic Injury of the Liver, (E. Farber and M. M. Fisher, Eds.) pp. 59–154, Marcel Dekker New York.Google Scholar
  45. Morell, A. G., Gregoriadis, G., Sceinberg, I. H., Hickman, J., and Ashwell, G., 1971, The role of sialic acid in determining the survival of glycoproteins in the circulation, J. Biol. Chem. 246: 1461–1467.PubMedGoogle Scholar
  46. Mueller, S. C. and Hubbard, A. L., 1986, Receptor-mediated endocytosis of asialoglycoproteins by rat hepatocytes: receptor-positive and receptor-negative endosomes, J. Cell Biol. 102: 932–942.PubMedCrossRefGoogle Scholar
  47. Munthe-Kaas, A. C., Berg, T., and Seljelid, R., 1976, Distribution of lysosomal enzymes in different types of rat liver cells, Expt. Cell Res. 99: 146–154.CrossRefGoogle Scholar
  48. Murakami, M., Horiuchi, S., Takata, K., and Morino, Y., 1986, Scavenger receptor for malondialdehyde-modified high-density lipoprotein on rat sinusoidal liver cells, Biochem. Biophys. Res. Comm. 137: 29–35.PubMedCrossRefGoogle Scholar
  49. Nagelkerke, J. F., Barto, K. P., and van Berkel, T.J.C., 1982, Receptor-mediated endocytosis in rat liver non-parenchymal cells. An evaluation of two recently developed cell isolation procedures, in Sinusoidal Liver Cells. ( D. L. Knook and E. Wisse, eds.), pp. 319–326, Elsevier Biomedical Press, Amsterdam.Google Scholar
  50. Opresko, L. K., and Karpf, R. A., 1987, Specific proteolysis regulates fusion between endocytic compartments in Xenopus oocytes, Cell 51: 557–568.PubMedCrossRefGoogle Scholar
  51. Oude Elferink, R. P. J., Van Doom-Van Wakeren, J., Hendriks, T., Strijland, A., Reuser, A. J. J., and Tager, J., 1985, Biosynthesis and intracellular transport of a-glucosidase and cathepasin D in normal and mutant human fibroblasts, Eur. J. Biochem. 153: 55–63.Google Scholar
  52. Oude Elferink, R. P. J., Van Doom-Van Wakeren, J., Hendriks, T., Strijland, A., and Tager, J., 1986, Transport and processing of endocytosed lysosomal a-glucosidase in cultured human skin fibroblasts, Eur. J. Biochem. 158: 339–344.Google Scholar
  53. Pertoft, H., Wärmegard, B., and Höök, M., 1978, Heterogeneity of lysosomes originating from rat liver parenchymal cells, Biochem. J. 174: 309–317.PubMedGoogle Scholar
  54. Piao, Y. J. and Ogawa, K., 1985, Ultrastructural and cytochemical observations on heterophagy and autophagy of macrophage in mouse thymus, Acta Histochem. Cytochem. 18: 615–632.CrossRefGoogle Scholar
  55. Pittman, R. C., Careco, J. E., Glass, C. K., Green, S. R., Taylor, C. A., and Attie, A. D., 1983, A radioiodinated, intracellularly trapped ligand for determining the sites of plasma protein degradation in vivo, Biochem. J. 212: 791–800.PubMedGoogle Scholar
  56. Pizzo, S. V., Lehrman, M. A., Imber, M. J., and Guthrow, C. E., 1981, The clearance of glycoproteins in diabetic mice. Biochem. Biophys. Res. Commun. 101: 704–708.PubMedCrossRefGoogle Scholar
  57. Praaning-Van Dalen, D. P., De Leeuw, M., Brouwer, A., De Ruiter, C. F., and Knook, D. L., 1982, Ultrastructural and biochemical characterization of endocytic mechanisms in rat liver Kupffer and endothelial cells, in Sinusoidal Liver Cells ( D. L. Knook and E. Wisse, eds.), pp. 271–278, Elsevier Biomedical Press, Amsterdam.Google Scholar
  58. Quintart, J., Courtoy, P. J., Limet, J. N., and Baudhuin, P., 1983, Galactose specific endocytosis in rat liver, Eur. J. Biochem. 131: 105–112.PubMedCrossRefGoogle Scholar
  59. Rodman, J. S., Schlessinger, P., and Stahl, P., 1978, Rat plasma clearance of horseradish peroxidase and yeast invertase is mediated by specific recognition, FEBS Lett. 85: 345–348.PubMedCrossRefGoogle Scholar
  60. Roos, P. H., Hartman, H-J., Schlepper-Schafer, J., Kolb, H., and Kolb-Bachofen, V., 1985, Galactose-specific receptors on liver cells. II. characterization of the purified receptor from macrophages reveals no structural relationship to the hepatocyte receptor, Biochim. Biophys. Acta. 847: 115–121.PubMedCrossRefGoogle Scholar
  61. Schlepper-Schäfer, J., Kolb-Bachofen, V., Holl, N., Friedrich, E., and Kolb, H., 1982, Galactose-specific lectin on rat Kupffer cells: localization and function, in Sinusoidal Liver Cells ( D. L. Knook and E. Wisse, eds.), pp. 279–286, Elsevier Biomedical Press, Amsterdam.Google Scholar
  62. Schlepper-Schäfer, J., Hülsmann, D., Djovkar, A., Meyer, H. E., Herbertz, L., Kolb, H., and Kolb-Bachofen, V., 1986, Endocytosis via galactose receptors in vivo, Expl. cell res. 165: 494–506.CrossRefGoogle Scholar
  63. Schlessinger, P. H., Rodman, J. S., Doebber, T. W., Stahl, P. D., Lee, Y. C., Stowell, C. P., and Kuhlenschmidt, T. B., 1980, The role of extra-hepatic tissues in the receptor-mediated plasma clearance of glycoproteins terminated by mannose or N-acetylglucosamine, Biochem. J. 192: 597–606.Google Scholar
  64. Schmid, S., Fuchs, R., Kielian, M., Helenius, A., and Mellman, I., 1989, Acidification of endosome subpopulations in wild-type Chinese hamster ovary cells and temperature-sensitive acidifcation-defective mutants, J. Cell Biol. 108: 1291–1300.PubMedCrossRefGoogle Scholar
  65. Stahl, P., Schlessinger, P. H., Rodman, J. S., and Doebber, T., 1976, Recognition of lysosomal glycosidases in vivo inhibited by modified glycoproteins, Nature 264: 86–88.PubMedCrossRefGoogle Scholar
  66. Steer, C. J. and Ashwell, G., 1980, Studies on a mammalian hepatic binding protein specific for asialoglycoproteins, J. Biol. Chem. 255: 3008–3013.PubMedGoogle Scholar
  67. Steer, C. J. and Clarenburg, R., 1979, Unique distribution of glycoprotein receptors on parenchymal and sinusoidal cells of rat liver, J. Biol. Chem. 254: 4457–4461.PubMedGoogle Scholar
  68. Stockert, R. J., Morell, A. G., and Scheinberg, H., 1976, The existence of a second route for the transfer of certain glycoproteins from the circulation into the liver, Biochem. Biophys. Res. Comm. 68: 988–993.CrossRefGoogle Scholar
  69. Stoorvogel, W., Geuze, H. J., Griffith, J. M., Schwartz, A. L., and Strous, G. J., 1989, Relations between the intracellular pathway of the receptors for transferrin, asialoglycoprotein, and mannose-6-phosphate in human hepatoma cells, J. Cell Biol. 108: 2137–2148.PubMedCrossRefGoogle Scholar
  70. Stowell, C. P. and Lee, Y. C., 1978, The binding of D-glucosyl-neoglycoproteins to the hepatic asialoglycoprotein receptor, J. Biol. Chem. 253: 6107–6110.PubMedGoogle Scholar
  71. Summerfield, J. A., Vergalla, J., and Jones, E. A., 1982, Modulation of a glycoprotein recognition system on rat hepatic endothelial cells by glucose and diabete mellitus, J. Clin. Invest. 69: 1337–1347.PubMedCrossRefGoogle Scholar
  72. Swanson, J., Bushnell, A., and Silverstein, S. C., 1987, Tubular lysosome morphology and distribution within macrophages depend on the integrity of cytoplasmic microtubules, Proc. Natl. Acad. Sci. USA. 84: 1921–1925.PubMedCrossRefGoogle Scholar
  73. Tarentino, A. L., Plummer, T. H., Jr, and Maley, F., 1974, The release of intact oligosaccharides from specific glycoproteins by endo-B-N-acetylglucosaminidase H., J. Biol. Chem. 249: 818–824.PubMedGoogle Scholar
  74. Thirion, J. and Wattiaux, R., 1988, Endocytic modifications occuring in primary culture of rat hepatocytes, 4th Int. Congr. Cell Biol., Montreal. Abstracts of papers, p. 240.Google Scholar
  75. Trimble, R. B. and Maley, F., 1977, Subunit structure of external invertase from saccharomyces cerevisiae, J. Biol. Chem. 252: 4409–4412.PubMedGoogle Scholar
  76. Wall, D. A., Wilson, G., and Hubbard, A. L., 1980, The galactose-specific recognition system of the mammalian liver: the route of ligand internalization in rat hepatocytes, Cell 21: 79–93.PubMedCrossRefGoogle Scholar
  77. Wall, D. A. and Hubbard, A. L., 1985, Receptor mediated endocytosis of asialoglycoproteins by rat liver hepatocytes: biochemical characterization of the endosomal compartments, J. Cell Biol. 101: 2104–2112.PubMedCrossRefGoogle Scholar
  78. Wattiaux, R., Baudhuin, P., Berleur, A. M., and De Duve, C., 1956, Tissue fractionation studies. 8. cellular localization of bound enzymes, Biochem. J. 63: 608–610.PubMedGoogle Scholar
  79. Wattiaux, R., Wibo, M., and Baudhuin, P., 1963, Influence of the injection of Triton WR 1339 on the properties of rat liver lysosomes, in Ciba Foundation Symposium on Lysosomes. ( A. V. de Reuck and M. P. Cameron, eds.), pp. 176–200, J. and A. Churchill Ltd. London.CrossRefGoogle Scholar
  80. Wattiaux, R., Wattiaux-De Coninck, S., Ronveaux-Dupal, M. F., and Dubois, F., 1978, Isolation of rat liver lysosomes by isopycnic centrifugation in a metrizamide gradient, J. Cell Biol. 78: 349–368.PubMedCrossRefGoogle Scholar
  81. Wattiaux, R., Jadot, M., Misquith, S., Dubois, F., and Wattiaux-De Coninck, S., 1986, Differences in the cellular location of substances endocytosed by rat liver as observed from the distribution patterns obtained after isopycnic centrifugation in a sucrose gradient, Biochem. Biophys. Res. Commun. 136: 504–509.PubMedCrossRefGoogle Scholar
  82. Wattiaux, R., Wattiaux-De Coninck, S., Dubois, F., and Braun, A., 1987, Influence of the injection of mannan on rat liver lysosomes, Biochem. Soc. Transac. 15: 435.Google Scholar
  83. Wattiaux, R., Misquith, S., Wattiaux-De Coninck, S., and Dubois, F., 1989, Fate of asialofetuin endocytosed by rat liver, Biochem. Biophys. Res. Commun. 158: 313–318.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Robert Wattiaux
    • 1
  • Michel Jadot
    • 1
  • Sandra Misquith
    • 1
  • Simone Wattiaux-de Coninck
    • 1
  1. 1.Laboratoire de Chimie PhysiologiqueFacultés Universitaires Notre-Dame de la PaixNamurBelgium

Personalised recommendations