Advertisement

Quantitative Fluorescence Techniques for the Characterization of Endocytosis in Intact Cells

  • Nita H. Salzman
  • Frederick R. Maxfield
Part of the Subcellular Biochemistry book series (SCBI, volume 19)

Abstract

Fluorescence techniques have been used extensively in the biological sciences, and have been shown to be powerful tools for studying cell biology. Fluorescence has been used mainly for qualitative study in fixed preparations, as in immunofluorescence which has proved useful in the identification and localization of organelles and cellular proteins. Recently, a number of techniques have been developed for quantitative studies in both fixed and living cells.*

Keywords

Endocytic Pathway Endocytic Vesicle Recycling Endosome Recycling Pathway Endocytic Compartment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aikens, R. S., Agard, D. A., and Sedat, J. W., 1989, Solid-state imagers for microscopy, Meth. Cell Biol. 29: 292–314.Google Scholar
  2. Ajioka, R. S. and Kaplan, J., 1986, Intracellular pools of transferrin receptors result from con-stitutive internalization of unoccupied receptors, Proc. Natl. Acad. Sci. USA 83: 6445–6449.PubMedCrossRefGoogle Scholar
  3. Al-Awqati, Q., 1986, Proton-translocating ATPases, Ann. Rev. Cell Biol. 2: 179–199.PubMedCrossRefGoogle Scholar
  4. Anderson, R. G. W. and Pathak, R. K., 1985, Vesicles and cistemae in the trans-Golgi apparatus of human fibroblasts are acidic compartments, Cell 40: 635–643.PubMedCrossRefGoogle Scholar
  5. Arndt-Jovin, D. J., Robert-Nicoud, M., Kaufman, S. J., and Jovin, T. M., 1985, Fluorescence digital imaging microscopy in cell biology, Science 230: 247–256.PubMedCrossRefGoogle Scholar
  6. Aubin, J. E., 1979, Autofluorescence of viable cultured mammalian cells, J. Histochem. Cytochem. 27: 36–43.PubMedCrossRefGoogle Scholar
  7. Barak, L. S. and Webb, W. W., 1981, Fluorescent low-density lipoprotein for observation of dynamics of individual receptor complexes on cultured human fibroblasts, J. Cell Biol. 90: 595–604.PubMedCrossRefGoogle Scholar
  8. Barrett, A. J., 1972, Lysosomal Enzymes, in Lysosomes: A laboratory handbook ( J. T. Dingle, ed.), North-Holland/American Elsevier, Amsterdam/New York, pp. 46–135.Google Scholar
  9. Borden, L. A., Einstein, R., Gabel, C. A., and Maxfield, F. R., 1990, Acidification-dependent dissociation of endocytosed insulin precedes that of endocytosed proteins bearing the mannose-6-phosphate recognition marker, J. Biol. Chem. 265: 8497–8504.PubMedGoogle Scholar
  10. Braell, W. A., 1987, Fusion between endocytic vesicles in a cell-free system, Proc. Natl. Acad. Sci. USA 84: 1137–1141.PubMedCrossRefGoogle Scholar
  11. Bridges, K., Harford, J., Ashwell, G., and Klausner, R. D., 1982, Fate of receptor and ligand during endocytosis of asialoglycoproteins by isolated hepatocytes, Proc. Natl. Acad. Sci. USA 79: 350–354.PubMedCrossRefGoogle Scholar
  12. Dautry-Varsat, A., Ciechanover, A., and Lodish, H. F., 1983, pH and the recycling of transferring during receptor-mediated endocytosis, Proc. Natl. Acad. Sci. USA 80: 2258–2262.Google Scholar
  13. Diaz, R., Mayorga, L., and Stahl, P., 1988, In vitro fusion of endosomes following receptor-mediated endocytosis, Biochemistry 22: 5667–5674.Google Scholar
  14. Dickson, R. B., Hanover, J. A., Willingham, M. C., and Pastan, I., 1983, Prelysosomal divergence of transferrin and epidermal growth factor during receptor-mediated endocytosis, Biochemistry 22: 5667–5674.PubMedCrossRefGoogle Scholar
  15. DiPaola, M. and Maxfield, F. R., 1984, Conformational changes in the receptors for epidermal growth factor and asialoglycoproteins induced by the mildly acidic pH found in endocytic vesicles, J. Biol. Chem. 259: 9163–9171.PubMedGoogle Scholar
  16. Duncan, R. and Pratten, M. K., 1977, Membrane economics in endocytic systems, J. Theor. Biol. 66: 727–735.PubMedCrossRefGoogle Scholar
  17. Dunn, K. W. and Maxfield, F. R., 1990, The use of fluorescence microscopy in the study of receptor-mediated endocytosis, in Modern Cell Biology, Vol. 9: Non-Invasive Techniques in Cell Biology ( J. K. Forkett and S. Grinstein, eds.), Wiley-Liss, New York, pp. 153–176.Google Scholar
  18. Dunn, K. W., McGraw, T. E., and Maxfield, F. R., 1989, Iterative fractionation of recycling receptors from lysosomally destined ligands in an early sorting endosome, J. Cell. Biol. 109: 3303–3314.PubMedCrossRefGoogle Scholar
  19. Dunn, W. A., Hubbard, A. L., and Aronson, N. N., Jr., 1980, Low temperature selectively inhibits fusion between pinocytic vesicles and lysosomes during heterophagy of 1251-asialofetuin by the perfused rat liver, J. Biol. Chem. 255: 5971–5978.PubMedGoogle Scholar
  20. Enns, C. A., Larrick, J. W., Suomalainen, H., Schroder, J., and Sussman, H. H., 1983, Comigration and internalization of transferrin and its receptor in K562 cells, J. Cell Biol. 97: 579–585.PubMedCrossRefGoogle Scholar
  21. Ferris, A. L., Brown, J. C., Park, R. D., and Storrie, B., 1987, Chinese hamster ovary cell lysosomes rapidly exchange contents, J. Cell Biol. 105: 2703–2712.PubMedCrossRefGoogle Scholar
  22. Geuze, H. J., Slot, J. W., and Strous, G. J. A. M., 1983, Intracellular site of asialoglycoprotein receptor-ligand uncoupling: double-label immunoelectron microscopy during receptor-mediated endocytosis, Cell 32: 277–287.PubMedCrossRefGoogle Scholar
  23. Geuze, H. J., Slot, J. W., Strous, G. J. A. M., Peppard, J., von Figura, K., Hasilik, A., and Schwartz, A. L., 1984, Intracellular receptor sorting during endocytosis: comparative immunoelectron microscopy of multiple receptors in rat liver, Cell 37: 195–204.PubMedCrossRefGoogle Scholar
  24. Geuze, H. J., Slot, J. W., and Schwartz, A. L., 1987, Membranes of sorting organelles display lateral herogeneity in receptor distribution, J. Cell Biol. 104: 1715–1723.PubMedCrossRefGoogle Scholar
  25. Giloh, H. and Sedat, J. W., 1982, Fluorescence microscopy; reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate, Science 217: 1252–1255.PubMedCrossRefGoogle Scholar
  26. Goldberg, R. I., Smith, J. A., and Jarett, L., 1988, Insulin and alpha-2-macroglobulin-methylamine undergo endocytosis by different mechanisms in rat adipocytes. I. comparison of cell surface events, J. Cell. Physiol. 133: 203–212.CrossRefGoogle Scholar
  27. Goldstein, J. L., Brown, M. S., Anderson, R. G. W., Russell, D. W., and Schneider, W. J., 1985, Receptor-mediated endocytosis: concepts emerging from the LDL receptor system, Ann. Rev. Cell Biol. 1: 1–39.PubMedCrossRefGoogle Scholar
  28. Gruenberg, J. and Howell, K. E., 1987, An internalized transmembrane protein resides in a fusion-competent endosome for less than 5 minutes, Proc. Natl. Acad. Sci. USA 84: 5758–5762.PubMedCrossRefGoogle Scholar
  29. Harford, J., Bridges, K., Ashwell, G., and Klausner, R. D., 1983, Intracellular dissociation of receptor-bound asialoglycoproteins in cultured hepatocytes, J. Biol. Chem. 258: 3191–3197.PubMedGoogle Scholar
  30. Hart, P. D. and Young, M. R., 1975, Interference with normal phagosome-lysosome fusion in macrophages using ingested yeast cells and suramin, Nature (London) 256: 47–49.CrossRefGoogle Scholar
  31. Heiple, J. M. and Taylor, D. L., 1980, Intracellular pH in single motile cells, J. Cell Biol. 86: 885–890.PubMedCrossRefGoogle Scholar
  32. Inoue, S., 1986, Video Microscopy, Plenum Press, New York.CrossRefGoogle Scholar
  33. Johnson, G. D., Davidson, R. S., McNamee, K. C., Russell, G., Goodwin, D., and Holborow, E. J., 1982, Fading of immunofluorescence during microscopy: a study of the phenomenon and its remedy, J. lmmunol. Meth. 55: 231–242.CrossRefGoogle Scholar
  34. Kam, Z., 1987, Microscopic imaging of cells, Quart. Rev. Biophys. 20: 201–259.CrossRefGoogle Scholar
  35. Keen, J. H., 1985, The structure of clathrin-coated membranes: assembly and disassembly, in Endocytosis ( I. Pastan and M. C. Willingham, eds.), pp. 85–126, Plenum Press, New York.CrossRefGoogle Scholar
  36. Klausner, R. D., Ashwell, G., van Renswoude, J., Harford, J. B., and Bridges, K. R., 1983, Binding of apotransferrin to K562 cells: explanation of the transferrin cycle, Proc. Natl. Acad. Sci. USA 80: 2263–2266.PubMedCrossRefGoogle Scholar
  37. Koval, M. and Pagano, R. E., 1989, Lipid recycling between the plasma membrane and intracellular compartments: transport and metabolism of fluorescent sphingomyelin analogues in cultured fibroblasts, J. Cell Biol. 108: 2169–2181.PubMedCrossRefGoogle Scholar
  38. Linderman, J. J. and Lauffenburger, D. A., 1988, Analysis of intracellular receptor/ligand sorting in endosomes, J. Theor. Biol. 132: 203–245.PubMedCrossRefGoogle Scholar
  39. Marsh, M., Griffiths, G., Dean, G. E., Mellman, I., and Helenius, A., 1986, Three-dimensional structure of endosomes in BHK-21 cells, Proc. Natl. Acad. Sci. USA 83: 2899–2903.PubMedCrossRefGoogle Scholar
  40. Maxfield, F. R., 1982, Weak bases and inonophores rapidly and reversibly raise the pH of endocytic vesicles in cultured mouse fibroblasts, J. Cell Biol. 95: 676–681.PubMedCrossRefGoogle Scholar
  41. Maxfield, F. R., 1985, Acidification of endocytic vesicles and lysosomes, in Endocytosis ( I. Pastan and M. C. Willingham, eds.), pp. 235–257, Plenum Press, New York.CrossRefGoogle Scholar
  42. Maxfield, F. R., 1989a, Measurements of vacuolar pH and cytoplasmic calcium in living cells using fluorescence microscopy, Methods in Enzymology 173: 745–770.PubMedCrossRefGoogle Scholar
  43. Maxfield, F. R., 1989b, Fluorescent analogs of peptides and hormones, Meth. Cell Biol. 29: 13–28.CrossRefGoogle Scholar
  44. Maxfield, F. R., Willingham, M. C., Haigler, H. T., Dragsten, P., and Pastan, I. H., 1981, Binding, surface mobility, internalization, and degradation of rhodamine-labeled aZm-macroglobuli, Bio-chemistry 20: 5353–5358.Google Scholar
  45. Maxfield, F. R., Schlessinger, J., Shector, Y., Pastani, I., and Willingham, M. C., 1978, Collection of insulin, EGF, and a2m in the same patches on the surface of cultured fibroblasts and common internalization, Cell 14: 805–810.PubMedCrossRefGoogle Scholar
  46. Maxfield, F. R. and Yamashiro, D. J., 1987, Endosome acidification and the pathways of receptor-mediated endocytosis, in Immunobiology of Proteins and Peptides (M. Z. Atassi, ed.), pp. 189198, Plenum Press, New York.Google Scholar
  47. McGraw, T. E., Greenfield, L., and Maxfield, F. R., 1987, Functional expression of the human transferrin receptor cDNA in Chinese hamster ovary cells deficient in endogenous transferrin receptor, J. Cell Biol. 105: 207–214.PubMedCrossRefGoogle Scholar
  48. Mellman, I., Fuchs, R., and Helenius, A., 1986, Acidification of the endocytic and exocytic pathways, Ann. Rev. Biochem. 55: 663–700.PubMedCrossRefGoogle Scholar
  49. Mostov, K. E., Freidlander, M., and Blobel, G., 1984, The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulinlike domains, Nature 308: 37–43.PubMedCrossRefGoogle Scholar
  50. Mueller, S. C. and Hubbard, A. L., 1986, Receptor-mediated endocytosis of asialglycoproteins by rat hepatocytes: receptor-positive and receptor-negative endosomes, J. Cell Biol. 102: 932–942.PubMedCrossRefGoogle Scholar
  51. Murphy, R. F., Bisaccia, E., Cantor, C. R., Berger, C., and Edelson, R. L., 1984, Internalization and acidification of insulin by activated human lymphocytes, J. Cell. Phys. 121: 351–356.CrossRefGoogle Scholar
  52. Ohkuma, S. and Poole, B., 1978, Fluorescent probe measurement of the intralysosomal pH in living cells and the pertubation of pH by various agents, Proc. Natl. Acad. Sci. USA 75: 3327–3331.PubMedCrossRefGoogle Scholar
  53. Olsnes, S. and Sandvig, K., 1985, Toxins, in Endocytosis ( I. Pastan and M. C. Willingham, eds.), pp. 195–234, Plenum Press, New York.CrossRefGoogle Scholar
  54. Omary, M. B. and Trowbridge, I. S., 1981, Biosynthesis of the human transferrin receptor, J. Biol. Chem. 256: 12888–12892.PubMedGoogle Scholar
  55. Pagano, R. E. and Sleight, R. G., 1985, Defining lipid transport pathways in animal cells, Science 229: 1051–1057.PubMedCrossRefGoogle Scholar
  56. Parton, R. G., Prydz, K., Bomsel, M., Simons, K., and Griffiths, G., 1989, Meeting of the apical and basolateral endocytic pathways of the Madin-Darby canine kidney cell in late endosomes, J. Cell Biol. 109: 3259–3272.PubMedCrossRefGoogle Scholar
  57. Pastan, I. and Willingham, M. C., 1985, The pathway of endocytosis, in Endocytosis ( I. Pastan and M. Willingham, eds.), pp. 1–44, Plenum Press, New York.CrossRefGoogle Scholar
  58. Pearse, B. M. F. and Bretscher, M. S., 1981, Membrane recycling by coated vesicles, Ann. Rev. Biochem. 50: 85–101.PubMedCrossRefGoogle Scholar
  59. Pitas, R. E., Innerarity, T. L., Weinstein, J. N., and Mahley, R. W., 1981, Acetoacetylated lipoproteins used to distinguish fibroblasts from macrophages in vitro by fluorescence microscopy, Arteriosclerosis. 1: 177–185.PubMedCrossRefGoogle Scholar
  60. Renfrew, C. and Hubbard, A. L., 1988, Characterization of domain specific antibodies and their use in the study of epidermal growth factor receptor (EGFR) degradation, J. Cell Biol. 107: 551.Google Scholar
  61. Robbins, E. and Marcus, P., 1963, Dynamics of acridine orange-cell interaction. I. interrelationships of acridine orange particles and cytoplasmic reddening, J. Cell Biol. 18: 237–250.PubMedCrossRefGoogle Scholar
  62. Roederer, M. and Murphy, R. F., 1986, Cell-by-cell autofluorescence correction for low signal-to-noise systems: application to epidermal growth factor endocytosis by 3T3 fibroblasts, Cytometry 7: 558–565.PubMedCrossRefGoogle Scholar
  63. Rome, L. H., 1985, Curling receptors, Trends Biochem. Sci. 10: 151.CrossRefGoogle Scholar
  64. Roos, A. and Boron, W. F., 1981, Intracellular pH., Physiologic Reviews 61: 297–434.Google Scholar
  65. Salzman, N. H. and Maxfield, F. R., 1989, Fusion accessibility of endocytic compartments along the recycling and lysosomal endocytic pathways in intact cells, J. Cell Biol. 109: 2097–2104.PubMedCrossRefGoogle Scholar
  66. Salzman, N. H. and Maxfield, F. R., 1988, Intracellular fusion of sequentially formed endocytic compartments, J. Cell Biol. 106: 1083–1091.PubMedCrossRefGoogle Scholar
  67. Sandvig, K., Olsnes, S., Petersen, O. W., and van Deurs, B., 1988, Inhibition of endocytosis from coated pits by acidification of the cytosol, J. Cellular Biochemistry 36: 73–81.CrossRefGoogle Scholar
  68. Schlessinger, J., Shechter, Y., Cuatrecasas, P., Willingham, M. C., and Pastan, I., 1978, Quantitative determination of the lateral diffusion coefficients of the hormone-receptor complexes of insulin and epidermal growth factor on the plasma membrane of cultured fibroblasts, Proc. Natl. Acad. Sci. USA 75: 5353–5357.PubMedCrossRefGoogle Scholar
  69. Sipe, D. M. and Murphy, R. F., 1987, High-resolution kinetics of transferrin acidification in BALB/c3T3 cells: exposure to pH 6 followed by temperature-sensitive alkalinization during recycling, Proc. Natl. Acad. Sci. USA 84: 7119–7123.PubMedCrossRefGoogle Scholar
  70. Sklar, L. A., 1987, Real-time spectroscopic analysis of ligand-receptor dynamics, Ann. Rev. Biophys. Chem. 16: 479–506.CrossRefGoogle Scholar
  71. Sklar, L. A., Finney, D. A., Oades, Z. G., Jesaitis, A. J., Painter, R. G., and Cochrane, C. G., 1984, The dynamics of ligand-receptor interactions, J. Biol. Chem. 259: 5661–5669.PubMedGoogle Scholar
  72. Sklar, L. A., Hyslop, P. A., Oades, Z. G., Omann, G. M., Jesaitis, A. J., Painter, R. G., and Cochrane, C. G., 1985. Signal transduction and ligand-receptor dynamics in the human neutrophil, J. Biol. Chem. 260: 11461–11467.PubMedGoogle Scholar
  73. Sklar, L. A., Jesaitis, A. J., Painter, R. G., and Cochrane, C. G., 1982a, Ligand/receptor internalization: a spectroscopic analysis and a comparison of ligand binding, cellular response, and internalization by human neutrophils, J. Cell. Biochem. 20: 193–202.PubMedCrossRefGoogle Scholar
  74. Sklar, L. A., McNeil, V. M., Jesaitis, A. J., Painter, R. G., and Cochrane, C. G., 1982b, A continuous spectroscopic analysis of the kinetics of elastase secretion by neutrophils, J. Biol. Chem. 257: 5471–5475.PubMedGoogle Scholar
  75. Smith, R. M. and Jarett, L., 1987, Ultrastructural evidence for the accumulation of insulin in nuclei of intact 3T3–L1 adipocytes by an insulin-receptor mediated process, Proc. Natl. Acad. Sci. USA 84: 459–463.PubMedCrossRefGoogle Scholar
  76. Solari, R. and Kraehenbuhl, J. P., 1984, Biosynthesis of the IgA receptor: a model for the trans-epithelial sorting of a membrane glycoprotein, Cell 36: 61–71.PubMedCrossRefGoogle Scholar
  77. Spring, K. R. and Lowy, R. J., 1989, Characteristics of low light level television cameras, Meth. Cell. Biol. 29: 270–291.Google Scholar
  78. Stoorvogel, W., Geuze, H., and Strous, G. J., 1987, Sorting of endocytosed transferrin and asialoglycoprotein occurs immediately after internalization in HepG2 cells, J. Cell Biol. 104: 1261–1268.PubMedCrossRefGoogle Scholar
  79. Swanson, J. A., 1989a, Fluorescent labeling of endocytic compartments, Meth. Cell Biol. 29: 137–152.CrossRefGoogle Scholar
  80. Swanson, J. A., 1989b, Phorbol esters stimulate macropinocytosis and solute flow through macrophages, J. Cell Science 94: 135–142.PubMedGoogle Scholar
  81. Swanson, J. A., Yirinec, B. D., and Silverstein, S. C., 1985, Phorbol esters and horseradish peroxidase stimulate pinocytosis and redirect the flow of pinocytosed fluid in macrophages, J. Cell Biol. 100: 851–859.PubMedCrossRefGoogle Scholar
  82. Taylor, D. L. and Salmon, E. D., 1989, Basic fluorescence microscopy. Meth. Cell Biol. 29: 208–238.Google Scholar
  83. Tycko, B. and Maxfield, F. R., 1982, Rapid acidification of endocytic vesicles containing a2mmacroglobulin, Cell 28: 643–651.PubMedCrossRefGoogle Scholar
  84. Tycko, B., Keith, C. H., and Maxfield, F. R., 1983, Rapid acidification of endocytic vesicles containing asialoglycoprotein in cells of a human hepatoma line, J. Cell Biol. 97: 1762–1776.PubMedCrossRefGoogle Scholar
  85. van Renswoude, J., Bridges, K. R., Harford, J. B., and Klausner, R. D., 1982, Receptor-mediated endocytosis of transferrin and the uptake of Fe in K562 cells: identification of a nonlysosomal acidic compartment, Proc. Natl. Acad. Sci. USA 79: 6186–6190.PubMedCrossRefGoogle Scholar
  86. Wampler, J. E. and Kutz, K., 1989, Quantitative fluorescence microscopy using photomultiplier tubes and imaging detectors, Meth. Cell Biol. 29: 239–269.CrossRefGoogle Scholar
  87. Wang, Y. and Taylor, D. L., eds., 1989, Methods in Cell Biology, vol. 29, Fluorescence Microscopy of Living Cells in Culture, Part A., Academic Press, New York.Google Scholar
  88. White, J., Kartenbech, J., and Helenius, A., 1980, Fusion of Semliki Forest virus with the plasma membrane can be induced by low pH., J. Cell Biol. 87: 264–272.PubMedCrossRefGoogle Scholar
  89. White, J., Keilian, M., and Helenius, A., 1983, Membrane fusion proteins of enveloped animal viruses, Quart. Rev. Biophys. 16: 151–195.CrossRefGoogle Scholar
  90. Wolkoff, A. W., Klausner, R. D., Ashwell, G., and Harford, J., 1984, Intracellular segregation of asialoglycoproteins and their receptor: a prelysosomal event subséquent to dissociation of the ligand-receptor complex, J. Cell Biol. 98: 375–381.PubMedCrossRefGoogle Scholar
  91. Yamashiro, D. J., Borden, L. A., and Maxfield, F. R., 1989, Kinetics of a2-macroglobulin endocytosis and degradation in mutant and wild-type Chinese hamster ovary cells, J. Cell. Phys. 139: 377–382.CrossRefGoogle Scholar
  92. Yamashiro, D. J. and Maxfield, F. R., 1987a, Kinetics of endosome acidification in mutant and wild-type Chinese hamster ovary cells, J. Cell Biol. 105: 2713–2721.PubMedCrossRefGoogle Scholar
  93. Yamashiro, D. J. and Maxfield, F. R., 1987b, Acidification of morphologically distinct endosomes in mutant and wild-type Chinese hamster ovary cells, J. Cell Biol. 105: 2723–2733.PubMedCrossRefGoogle Scholar
  94. Yamashiro, D. J. and Maxfield, F. R., 1988, Regulation of endocytic processes by pH, Trends Pharmacol. Sci. 9: 190–193.PubMedCrossRefGoogle Scholar
  95. Yamashiro, D. J., Tycko, B., Fluss, S. R., and Maxfield, F. R., 1984, Segregation of transferrin to a mildly acidic (pH 6.5) para-Golgi compartment in the recycling pathway, Cell 37: 789–800.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Nita H. Salzman
    • 1
    • 2
  • Frederick R. Maxfield
    • 1
  1. 1.Department of Physiology, College of Physicians and SurgeonsColumbia UniversityNew YorkUSA
  2. 2.Department of PharmacologyNew York University School of MedicineNew YorkUSA

Personalised recommendations