Reconstitution of Endosomal Transport and Proteolysis

  • J. S. Blum
  • R. Diaz
  • L. S. Mayorga
  • P. D. Stahl
Part of the Subcellular Biochemistry book series (SCBI, volume 19)


Receptor-mediated endocytosis is initiated by the accumulation of receptor-ligand complexes in clathrin-coated pits on the plasma membrane. The clustering of receptors in these domains is followed by membrane invagination and the subsequent formation of coated vesicles. Ligand binding induces the clustering of some receptors—for example, epidermal growth factor (EGF) receptor—in coated pits (Beginout et al.,1985). Alternatively, many other receptors—low density lipoprotein receptor (LDL), transferrtin receptor—are internalized constitutively in the absence of ligand (Anderson et al., 1977; Harding et al.,1983). Numerous studies suggest the signals for clustering and internalization are encoded in the cytoplasmic tail of endocytosed receptors (Davis et al., 1987; Lobel et al., 1989). Proteins associated with clathrin in the vesicle coat, such as adaptins, may interact directly with receptor tails to regulate these early steps in endocytosis (Pearse, 1988; Glickman et al.,1989). Shortly after their formation, coated vesicles containing receptor-ligand complexes lose their clathrin lattice in an ATP-dependent reaction (Rothman and Schmid, 1986). The resulting smooth vesicles (early endosomes) may retain some peripheral proteins and membrane components that function in intracellular transport and sorting reactions.


Early Endosome Mannose Receptor Vesicle Fusion Coated Vesicle Endocytic Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alstiel, L. and Branton, D., 1983, Fusion of coated vesicles with lysosomes: measurement with a fluorescent assay, Cell 32: 921–929.CrossRefGoogle Scholar
  2. Ajioka, R. S. and Kaplan, J., 1987, Characterization of endocytic compartments using the horse- radish peroxidase—diaminobenizidine density shift technique, J. Cell Biol. 104: 77–85.PubMedCrossRefGoogle Scholar
  3. Anderson, R. G. W., Brown, M. S., and Goldstein, J. L., 1977, Role of the coated endocytic vesicle in the uptake of receptor-bound low-density lipoprotein in human fibroblasts, Cell 10: 351–364.PubMedCrossRefGoogle Scholar
  4. Baker, D., Hicke, L., Rexach, M., Schleyer, M., and Schekman, R., 1988, Reconstitution of SEC gene product-dependent intercompartmental protein transport, Cell 54: 335–344.PubMedCrossRefGoogle Scholar
  5. Balch, W. E., Dunphy, W. G., Braell, W. A., and Rothman, J. E., 1984, Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine, Cell 39: 405–416.PubMedCrossRefGoogle Scholar
  6. Beckers, C. J. M. and Balch, W. E., 1989, Calcium and GTP: essential components in vesicular trafficking between the endoplasmic reticulum and Golgi apparatus, J. Cell. Biol. 108: 1245 1256.Google Scholar
  7. Beckers, C. J. M., Keller, D. S., and Batch, W. E., 1987, Semi-intact cells permeable to macromolecules: Use in reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex, Cell 50: 523–534.PubMedCrossRefGoogle Scholar
  8. Beguinot, L., Hanover, J. A., Ito, S., Richert, N. D., Willingham, M. C., and Pastan, I., 1985, Phorbol esters induce transient internalization without degradation of unoccupied epidermal growth-factor receptors, Proc. Natl. Acad. Sci. USA 82: 2774–2778.PubMedCrossRefGoogle Scholar
  9. Blum, J. S. and Cresswell, P., 1988, Role for intracellular proteases in the processing and transport of class II HLA antigens, Proc. Natl. Acad. Sci. USA 85: 3975–3979.PubMedCrossRefGoogle Scholar
  10. Blum, J. S., Fiani, M. L., and Stahl, P. D., 1989, Characterization of neutral and acidic proteases in endosomal vesicles, J. Cell Biol. 109: 188a.Google Scholar
  11. Braell, W. A., 1987, Fusion between endocytic vesicles in a cell-free system, Proc. Natl. Acad. Sci. U.S.A. 84: 1137–1141.PubMedCrossRefGoogle Scholar
  12. Burgoyne, R. D., 1987, G proteins: control of exocytosis, Nature 328: 112–113.PubMedCrossRefGoogle Scholar
  13. Burgoyne, R. D., 1989, Small GTP-binding proteins, TIBS 14: 393–396.Google Scholar
  14. Davey, J., Hurtley, S. M., and Warren, G., 1985, Reconstitution of an endocytic event in a cell-free system, Cell 43: 643–652.PubMedCrossRefGoogle Scholar
  15. Davis, C. G., van Driel, I. R., Russell, D. W., Brown, M. S., and Goldstein, 1987, The low-density lipoprotein receptor. Identification of amino acids in cytoplasmic domain required for rapid endocytosis, J. Biol. Chem. 262: 4075–4082.PubMedGoogle Scholar
  16. De Brabander, M., Nuydens, R., Geerts, H., and Hopkins, C. R., 1988, Dynamic behavior of the transferrin receptor followed in living epidermoid carcinoma (A431) cells with navoid microscopy, Cell Motil. Cytoskel. 9: 30–47.CrossRefGoogle Scholar
  17. Diaz, R., Mayorga, L., and Stahl, P., 1988, In vitro fusion of endosomes following receptor-mediated endocytosis, J. Biol. Chem. 263: 6093–6100.Google Scholar
  18. Diaz, R., Mayorga, L. S., Mayorga, L. E., and Stahl, P. D., 1989a, In vitro clustering and multiple fusion among macrophage endosomes, J. Biol. Chem. 264: 13171–13180.Google Scholar
  19. Diaz, R., Mayorga, L. S., Weidman, P. J., Rothman, J. E., and Stahl, P. D., 19896, Vesicle fusion following receptor-mediated endocytosis requires a protein active in Golgi transport, Nature 339: 398–400.Google Scholar
  20. Diment, S., Leech, M. S., and Stahl, P. D., 1988, Cathepsin D is membrane-associated in macrophage endosomes, J. Biol. Chem. 263: 6901–6907.PubMedGoogle Scholar
  21. Diment, S., Martin, K. J., and Stahl, P. D., 1989, Cleavage of parathyroid hormone in macrophage endosomes illustrates a novel pathway for intracellular processing of proteins, J. Biol. Chem. 264: 13403–13406.PubMedGoogle Scholar
  22. Diment, S. and Stahl, P., 1985, Macrophage endosomes contain proteases which degrade endocytosed protein ligands, J. Biol. Chem. 260: 15311–15317.PubMedGoogle Scholar
  23. Duncan, J. and Kornfeld, S., 1988, Intracellular movement of two mannose-6-phosphate receptors: return to the Golgi apparatus, J. Cell Biol. 106: 617–628.PubMedCrossRefGoogle Scholar
  24. Fiani, M. L. and Stahl, P. D., 1988, Intracellular processing of ricin and ricin A by macrophages, J. Cell Biol. 107: 114a.Google Scholar
  25. Gabel, C. A. and Foster, S. A., 1987, Postendocytic maturation of acid hydrolases: evidence of prelysosomal processing, J. Cell Biol. 105: 1561–1570.PubMedCrossRefGoogle Scholar
  26. Geuze, H. J., Slot, J. W., Strous, G. J. A. M., Lodish, H. F., and Schwartz, A. L., 1983, Intracellular site of asialoglycoprotein receptor-ligand uncoupling. Double-label immunoelectron microscopy during receptor-mediated endocytosis, Cell 32: 277–287.PubMedCrossRefGoogle Scholar
  27. Glick, B. S. and Rothman, J. E., 1987, Possible role for fatty acyl-coenzyme A in intracellular protein transport, Nature 326: 309–312.PubMedCrossRefGoogle Scholar
  28. Glickman, J. N., Conibear, E., and Pearse, B. M. F., 1989, Specificity of binding of clathrin adaptors to signals on the mannose-6-phosphate/insulin-like growth factor II receptor, EMBO J. 8: 1041–1047.PubMedGoogle Scholar
  29. Goda, Y. and Pfeffer, S. R., 1988, Selective recycling of the mannose-6-phosphate/IGF-II receptor to the trans-Golgi network in vitro, Cell 55: 309–320.PubMedCrossRefGoogle Scholar
  30. Griffiths, G., Hoflack, B., Simons, K., Mellman, I., and Kornfeld, S., 1988, The mannose-6phosphate receptor and the biogenesis of lysosomes, Cell 52: 329–341.PubMedCrossRefGoogle Scholar
  31. Gruenberg, J. E. and Howell, K. E., 1986, Reconstitution of vesicle fusions occurring in endocytosis with a cell-free system, EMBO J. 5: 3091–3101.PubMedGoogle Scholar
  32. Gruenberg, J., Griffiths, G., and Howell, K. E., 1989, Characterization of the early endosome and putative endocytic carrier vesicles in vivo and with an assay of vesicle function in vitro, J. Cell Biol. 108: 1301–1316.PubMedCrossRefGoogle Scholar
  33. Guagliardi, L. E., Koppelman, B., Blum, J. S., Mark, M. S., Cresswell, P., and Brodsky, F. M., 1990, Colocalization of molecules involved in antigen processing and presentation in an early endocytic compartment, Nature 343: 133–139.PubMedCrossRefGoogle Scholar
  34. Hamel, F. G., Posner, B. I., Bergeron, J. J. M., Frank, B. H., and Duckworth, W. C., 1988, Isolation of insulin degradation products from endosomes derived from intact rat liver, J. Biol. Chem. 263: 6703–6708.PubMedGoogle Scholar
  35. Harding, C., Heuser, J., and Stahl, P., 1983, Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes, J. Cell Biol. 97: 329–339.PubMedCrossRefGoogle Scholar
  36. Harding, C., Levy, M. A., and Stahl, P., 1985, Morphological analysis of ligand uptake and processing: the role of multivesicular endosomes and CURL in receptor-ligand processing, Eur. J. Cell Biol. 36: 230–238.PubMedGoogle Scholar
  37. Hasilik, A. and Neufeld, E. F., 1980, Biosynthesis of lysosomal enzymes in fibroblasts, J. Biol. Chem. 255: 4937–4945.PubMedGoogle Scholar
  38. Lobel, P., Fujimoto, K., Ye, R. D., Griffiths, G., and Kornfeld, S., 1989, Mutations in the cycoplasmic domain of the 275 kd mannose-6-phosphate receptor differentially alter lysosomal enzyme sorting and endocytosis, Cell 57: 787–796.PubMedCrossRefGoogle Scholar
  39. Mayorga, L. S., Diaz, R., and Stahl, P. D., 1988, Plasma membrane—derived vesicles containing receptor-ligand complexes are fusogenic with early endosomes in a cell-free system, J. Biol. Chem. 263: 17213–17216.PubMedGoogle Scholar
  40. Mayorga, L. S., Diaz, R., and Stahl, P. D., 1989a, Reconstitution of endosomal proteolysis in a cell-free system, J. Biol. Chem. 264: 5392–5399.PubMedGoogle Scholar
  41. Mayorga, L. S., Diaz, R., and Stahl, P. D., 19896, Regulatory role for GTP-binding proteins in endocytosis, Science 244: 1475–1477.Google Scholar
  42. Mayorga, L. S., Diaz, R., Colombo, M. I., and Stahl, P. D., 1989c, GTPyS stimulation of endosome fusion suggests a role for a GTP-binding protein in the priming or vesicles before fusion, Cell Regulation 1: 113–124.PubMedGoogle Scholar
  43. McCoy, K. L., Miller, J., Jenkins, M., Ronchese, F., Germain, R. N., and Schwartz, R. H., 1989, Diminished antigen processing by endosomal acidification mutant antigen-presenting cells, J. Immunol. 143: 29–38.PubMedGoogle Scholar
  44. Melancon, P., Glick, B. S., Malhotra, V., Weidman, P. J., Serafini, T., Gleason, M. L., Orci, L., and Rothman, J. E., 1987, Involvement of GTP-binding G proteins in transport through the Golgi stack, Cell 51: 1053–1062.PubMedCrossRefGoogle Scholar
  45. Mellman, I. and Plutner, H., 1984, Internalization and degradation of macrophage Fc receptors bound to polyvalent immune complexes, J. Cell Biol. 98: 1170–1177.PubMedCrossRefGoogle Scholar
  46. Mullock, B. M., Branch, W. J., van Schaick, M., Gilbert, L. K., and Luzio, J. P., 1989, Reconstitution of endosome-lysosome interaction in a cell-free system, J. Cell Biol. 108: 2093–2099.PubMedCrossRefGoogle Scholar
  47. Oates, P. J. and Touster, O., 1980, In vitro fusion of Acanthamoeba phagolysosomes. III. Evidence that cyclic nucleotides and vacuole subpopulations respectively control the rate and the extent of vacuole fusion in Acanthamoeba homogenates, J. Cell Biol. 85: 804–810.Google Scholar
  48. Opresko, L. K. and Karpf, R. A., 1987, Specific proteolysis regulates fusion between endocytic compartments in Xenopus oocytes, Cell 51: 557–568.PubMedCrossRefGoogle Scholar
  49. Pearse, B. M. F., 1988, Receptors compete for adaptors found in plasma membrane coated pits, EMBO J. 11: 3331–3336.Google Scholar
  50. Pease, R. J., Smith, G. D., and Peters, T. J., 1985, Degradation of endocytosed insulin in rat liver is mediated by low-density vesicles, Biochem. J. 228: 137–146.PubMedGoogle Scholar
  51. Pfeffer, S. R. and Rothman, J. E., 1987, Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi, Ann. Rev. Biochem. 56: 829–852.PubMedCrossRefGoogle Scholar
  52. Rodman, J. S., Levy, M. A., Diment, S., and Stahl, P. D., 1990, Immunolocalization of endosomal cathepsin D in rabbit alveolar macrophages, J. Leuk. Biol. 48: 116–122.Google Scholar
  53. Roederer, M., Bowser, R., and Murphy, R. F., 1987, Kinetics and temperature dependence of exposure of endocytosed material to proteolytic enzymes and low pH; evidence for a maturation model for the formation of lysosomes, J. Cell Physiol. 131: 200–209.PubMedCrossRefGoogle Scholar
  54. Rothman, J. E. and Schmid, S. L., 1986, Enzymatic recycling of clathrin from coated vesicles, Cell 46: 5–9.PubMedCrossRefGoogle Scholar
  55. Rudd, E., Kindber, G. M., Blomhoff, H. K., Godal, T., and Berg, T., 1988, Degradation of a monoclonal anti-p. chain antibody in a human surface IgM-positive B cell line starts in prelysosomal vesicles, J. Immunol. 141: 2951–2958.Google Scholar
  56. Ruohola, H., Kabcenell, A. K., and Ferro-Novick, S., 1988, Reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex in yeast: the acceptor Golgi compartment is defective in the sec23 mutant, J. Cell Biol. 107: 1465–1476.PubMedCrossRefGoogle Scholar
  57. Salminen, A. and Novick, P. J., 1987, A ras-like protein is required for a post-Golgi event in yeast secretion, Cell 49: 527–538.PubMedCrossRefGoogle Scholar
  58. Schaudies, R. P., Gorman, R. M., Savage, C. R., and Poretz, R. D., 1987, Proteolytic processing of epidermal growth factor within endosomes, Biochem. Biophys. Res. Commun. 143: 710–715.PubMedCrossRefGoogle Scholar
  59. Schmid, S. L., Fuchs, R., Mâle, P., and Mellman, I., 1988, Two distinct subpopulations of endo-somes involved in membrane recycling and transport to lysosomes, Cell 52: 73–83.PubMedCrossRefGoogle Scholar
  60. Segev, N., Mulholland, J., and Botstein, D., 1988, The yeast GTP-binding YPT1 protein and a mammalian counterpart are associated with the secretion machinery, Cell 52: 915–924.PubMedCrossRefGoogle Scholar
  61. Simmons, B. M., Stahl, P. D., and Russell, J. H., 1986, Mannose receptor-mediated uptake of ricin toxin and ricin A-chain by macrophages, J. Biol. Chem. 261: 7912–7920.PubMedGoogle Scholar
  62. Smythe, E., Pypaert, M., Lucocq, J., and Warren, G., 1989, Formation of coated vesicles from coated pits in broken A431 cells, J. Cell Biol. 108: 843–853.PubMedCrossRefGoogle Scholar
  63. Snider, M. D. and Rogers, O. C., 1985, Membrane traffic in animal cells: cellular glycoproteins return to the site of Golgi mannosidase I, J. Cell Biol. 100: 826–834.PubMedCrossRefGoogle Scholar
  64. Stahl, P., Schlesinger, P. H., Sigardson, E., Rodman, J. S., and Lee, Y. C., 1980, Receptor-mediated pinocytosis of mannose glycoconjugates by macrophages: characterization and evidence for receptor recycling, Cell 19: 207–215.PubMedCrossRefGoogle Scholar
  65. Tycko, B. and Maxfield, F. R., 1982, Rapid acidification of endocytic vesicles containing azmacroglobulin, Cell 28: 643–651.PubMedCrossRefGoogle Scholar
  66. Unanue, E. R. and Allen, P. M., 1987, The basis for the immunoregulatory role of macrophages and other accessory cells, Science 236: 551–557.PubMedCrossRefGoogle Scholar
  67. Virgin, H. W., Wittenberg, G. F., and Unanue, E. R., 1985, Immune complex affects in murine macrophages, J. Immunol. 135: 3735–3743.PubMedGoogle Scholar
  68. Weidman, P. J., Melancon, P., Block, M. R., and Rothman, J. E., 1989, Binding of an Nethylmaleimide-sensitive fusion protein to Golgi membranes requires both a soluble protein(s) and an integral membrane receptor, J. Cell Biol. 108: 1589–1596.PubMedCrossRefGoogle Scholar
  69. Wileman, T., Boshans, R. L., Schlesinger, P., and Stahl, P., 1984, Monensin inhibits recycling of macrophage mannose-glycoprotein receptors and ligand delivery to lysosomes, Biochem. J. 220: 665–675.PubMedGoogle Scholar
  70. Wileman, T., Boshans, R., and Stahl, P., 1985, Uptake and transport of mannosylated ligands by alveolar macrophages, J. Biol. Chem. 260: 7387–7393.PubMedGoogle Scholar
  71. Wiley, H. S., Van Nostrand, W., McKinley, D. N., and Cunningham, D. D., 1985, Intracellular processing of epidermal growth factor and its effect on ligand-receptor interactions, J. Biol. Chem. 260: 5290–5295.PubMedGoogle Scholar
  72. Wilson, D. W., Wilcox, C. A., Flynn, G. C., Chen, E., Kuang, W. J., Henzel, W. J., Block, M. R., Ullrich, A., and Rothman, J. E., 1989, A fusion-promoting protein needed for the transport from the endoplasmic reticulum and within the Golgi apparatus in both animal cells and yeast, Nature 339: 355–359.PubMedCrossRefGoogle Scholar
  73. Woodman, P. G. and Warren, G., 1988, Fusion between vesicles from the pathway of receptor-mediated endocytosis in a cell-free system, Eur. J. Biochem. 173: 101–108.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • J. S. Blum
    • 1
  • R. Diaz
    • 1
  • L. S. Mayorga
    • 2
  • P. D. Stahl
    • 1
  1. 1.Department of Cell Biology and PhysiologyWashington University School of MedicineSt. LouisUSA
  2. 2.Facultad de Cincias MedicanInstituto de Histologia y Embriologia550 MendozeArgentina

Personalised recommendations