Skip to main content

Influence of Cure Systems on Dielectric and Viscoelastic Relaxations in Crosslinked Chlorobutyl Rubber

  • Chapter
Synthesis, Characterization, and Theory of Polymeric Networks and Gels

Abstract

Dielectric spectroscopy has been used as a probe of molecular behavior in organic molecules for a number of years. 1,2 In conjunction with dynamic mechanical spectroscopy, it has been used to correlate the dynamic mechanical and dielectric relaxation behavior of a number of polymer systems, as well as providing insight into the molecular structural factors responsible for multiple relaxation mechanisms in polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Hedvig, Dielectric Spectroscopy of Polymers. Ch. 5 and references listed therein, Halsted Press, New York (1977).

    Google Scholar 

  2. N. G. McCrum, B. E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids, Ch. 10 and references listed therein, John Wiley & Sons, New York (1967).

    Google Scholar 

  3. B. E. Read, Polymer 30, 1439–1445 (1989).

    Article  CAS  Google Scholar 

  4. P. Colomer-Vilanova, M. Montserrat-Ribas, M. A. Ribes-Greus, J. M. Meseguer-Duenas, J. L. Gomez-Ribelles, and R. Diaz-Calleja, Polym.-Plast. Technol. Eng. 28, 635–647 (1989).

    Article  CAS  Google Scholar 

  5. E. R. Fitzgerald, Polymer Bull. 3, 129–134 (1980).

    Article  CAS  Google Scholar 

  6. R. N. Capps and J. Burns, J. Non-Crystalline Solids 131, 877–882 (1991)

    Article  Google Scholar 

  7. S. P. Kabin and G. P. Mikhailov, J. Tech. Phys. (USSR) 26, 493–497 (1956).

    Google Scholar 

  8. R. Bakule and A. Havranek, J. Polym. Sci. C53, 347–356 (1975).

    Google Scholar 

  9. D. Boese and F. Kremer, Macromolecules 23,. 829–835 (1990).

    Article  CAS  Google Scholar 

  10. Relaxations in Complex Systems, K. L. Ngai and G. B. Wright, Eds., Naval Research Laboratory, Washington, D. C., Oct. 1984.

    Google Scholar 

  11. J. Non-Crystalline Solids, Vols. 131–133.

    Google Scholar 

  12. C. M. Roland and K. L. Ngai, Macromolecules 24, 5315–5319 (1991).

    Article  CAS  Google Scholar 

  13. E. Mazeau, J. Perez, and G. P. Johari, Macromolecules 24, 4713–4723 (1991).

    Article  Google Scholar 

  14. N. K. Dutta and D. K. Tripathy, Polym. Degr. and Stability 30, 231–256 (1990).

    Article  CAS  Google Scholar 

  15. C. T. Moynihan, L. P. Boesch, and N. L. Laberge, Phys. Chem. Glasses 14, 122–125 (1973).

    CAS  Google Scholar 

  16. G. H. Weiss, J. T. Bendler, and M. Dishon, J. Chem. Phys. 83, 1424–1427 (1985).

    Article  CAS  Google Scholar 

  17. M. Dishon, G. H. Weiss, and J. T. Bendler, J. Res. Nat. Bur. Stand. 90, 27–39 (1985).

    Article  CAS  Google Scholar 

  18. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, NY, 1986, pp. 283ff.

    Google Scholar 

  19. C. P. Lindsey and G. D. Patterson, J. Chem. Phys. 73, 3348–3357 (1980).

    Article  CAS  Google Scholar 

  20. R. L. Zapp and P. Hous, “Butyl and Chlorobutyl Rubber”, in Rubber Technology, 2nd. Edition, Maurice Morton, Ed., Van Nostrand Reinhold, New York, 1973.

    Google Scholar 

  21. L. Bateman, C. G. Moore, M. Porter, and B. Savile, “Chemistry of Vulcanization”, in The Chemistry and Physics of Rubber-like Substances. L. Bateman, Ed., John Wiley & Sons, New York, 1963.

    Google Scholar 

  22. S. W. Schmitt, in Vanderbilt Rubber Handbook, R. 0. Babbit, Ed., Norwalk, CT., 1978, p.144.

    Google Scholar 

  23. I. Juntz, R. L. Zapp, and R. J. Pancirov, Rubber Chem. Technol. 57, 813–825 (1984).

    Article  Google Scholar 

  24. E. A. DiMarzio and M. Bishop, J. Chem. Phys. 60, 3802–3811 (1974).

    Article  CAS  Google Scholar 

  25. R. Diaz-Calleja, Polymer 19, 235–236 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Capps, R.N., Coughlin, C.S., Beumel, L.L. (1992). Influence of Cure Systems on Dielectric and Viscoelastic Relaxations in Crosslinked Chlorobutyl Rubber. In: Aharoni, S.M. (eds) Synthesis, Characterization, and Theory of Polymeric Networks and Gels. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3016-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3016-9_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6314-9

  • Online ISBN: 978-1-4615-3016-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics