Skip to main content

Abstract

It has been known for a long time that amorphous polymers1 behave as what is called nowadays fractals2 This was found for linear polymers and also for branched structures3 in the vicinity of the sol-gel transition. The latter was studied some years ago, and it was realized very early that the distribution of masses is very broad, and becomes infinitely polydisperse near the gelation threshold. More recently, excluded volume effects were taken into account4–6 ‚ and it was shown that each of the branched polymers in a sol is a fractal. In the following, we wish to show some consequences of such polydispersity on the (average) fractal behavior. As we shall see, although the study of branched macromolecules seems to be analogous to that of linear chains, it differs from it in a basic way. For instance, the measured dimension Deff of a dilute solution is not the actual fractal dimension D of every polymer, but is a function of both D and of the polydispersity index τ, to be introduced below. This implies that a single measurement does not necessarily give the actual dimension of fractal objects, and one has to check for possible effects of polydispersity. The origin of such effects is that the mass distribution function cannot be reduced to a single average mass, but to at least two masses, namely Nw and Nz that diverge in different ways near the gelation threshold. In what follows, we will discuss some consequences of this for the static properties. Another important consequence, for the rheological characteristics of these systems is that in the same way as they cannot be reduced to a single mass, they also have a distribution of relaxation times that is very broad7 8 and may be described by at least two times. As we shall see, there is still discussion about the divergences of these times near the sol-gel transition, and there might be more than one universality class for the dynamics in the reaction bath. In what follows, we will remind briefly the main properties of the polymers and of the distribution of molecular weights in section 2. Then we will discuss the static properties of dilute solutions. Section 4 is devoted to the semi-dilute solutions. Finally, the distribution of relaxation times and its consequences for the rheological properties both in the reaction bath and in dilute solutions will be discussed in section 5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.J. Flory, 1953, Introduction to Polymer Chemistry, Cornell University Press, Ithaca.

    Google Scholar 

  2. B. Mandelbrot, 1977, The Fractal Geometry of Nature, Freeman,San Francisco .

    Google Scholar 

  3. B. H. Zimm, W. H. Stockmayer, J. Chem. Phys. 17:1301, (1949).

    Article  CAS  Google Scholar 

  4. J. Isaacson, T. C. Lubensky, J. de Phys., 42: 175, (1981).

    Article  Google Scholar 

  5. P. G. de Gennes, C.R. Acad. Sci.(Paris), 291: 17, (1980).

    Google Scholar 

  6. M. Daoud, J. F. Joanny, J. Physique , 42: 1359, (1981).

    Article  CAS  Google Scholar 

  7. M. Daoud , J. Phys A21: L973, (1988).

    Google Scholar 

  8. J.E. Martin, J.P. Wilcoxon, Phys. Rev. Lett., 61: 373, (1988).

    Article  CAS  Google Scholar 

  9. D. Stauffer, J. Chem. Soc. Faraday Trans. II , 72 : 1354, (1976). 10 . P. G. de Gennes J. de Phys. Lett., 37 , 1, (1976).

    Article  CAS  Google Scholar 

  10. P. G. de Gennes J. de Phys. Lett., 37 , 1, (1976).

    Article  Google Scholar 

  11. D. Stauffer, Introduction to Percolation Theory, Taylor and Francis, London, (1985).

    Book  Google Scholar 

  12. H. Nakanishi, H.E. Stanley, Phys. Rev. B 22: 2466, (1980).

    Article  Google Scholar 

  13. B. Derrida, J. Vannimenus, J. Physique Lett. 41: 473, (1980). See also B. Derrida, D. Stauffer, H.J. Herrmann, J. Vannimenus, J. Physique Lett. 44 :701,(1983).

    Article  Google Scholar 

  14. H. Nakanishi, H.E. Stanley, Phys. Rev. B 22 : 2466 (1980).

    Google Scholar 

  15. M. E. Cates, J. de Phys. Lett. 38 : 2957 , (1985) .

    Google Scholar 

  16. M. Daoud , F. Family , G. Jannink , J. de Phys. Lett. 45 : 119 , (1984) .

    Article  Google Scholar 

  17. J. E. Martin, B. J. Ackerson, Phys. Rev. A31 :1180 (1985).

    Google Scholar 

  18. E. Bouchaud, M. Delsanti, M. Adam, M. Daoud, D. Durand, J. Physique Lett. 47 :1273, (1986).

    Article  CAS  Google Scholar 

  19. L. Leibler , F. Schosseler , in Physics of Finely Divided Matter , Springer Proc.Phys. 5 , Springer verlag, Berlin, 135 , (1985).

    Chapter  Google Scholar 

  20. S. J. Candau, M. Ankrim, J. P. Munch, P. Rempp, G. Hild, R. Osaka, in Physical Optics of Dynamical Phenomena in Macromolecular Systems, W. De Gruyter,Berlin,p. 145(1985).

    Google Scholar 

  21. E. V. Patton , J. A. Wesson , M. Rubinstein , J. C. Wilson , L. E. Oppenheimer, Macromolecules, 22: 1946, (1989).

    Article  CAS  Google Scholar 

  22. M. Daoud, L. Leibler, Macromolecules 41 : 1497, (1988).

    Article  Google Scholar 

  23. S. Arbabi, M. sahimi, Phys. Rev. Lett., 65 : 725, (1990).

    Article  CAS  Google Scholar 

  24. M. Doi , S. F. Edwards , the theory of polymer dynamics , Oxford Science publications ,(1986) .

    Google Scholar 

  25. J. Kertesz , J. Phys. A16 : L471 , (1983).

    Google Scholar 

  26. A. Coniglio , H. E. Stanley , Phys. Rev. Lett. 52 : 1068 , (1984) .

    Article  Google Scholar 

  27. P. G. de Gennes , J. de Phys. Lett. 37 : 1 , (1976).

    Article  Google Scholar 

  28. HJ. Herrmann, D.C. Hong, H.E. Stanley, J. Phys. A 17 : L261, (1984).

    Article  Google Scholar 

  29. M. J. Stephen , Phys. Rev. B17:4444 , (1978).

    Google Scholar 

  30. P. G. de Gennes , J. de Phys. Lett. 40 : 197 , (1979).

    Article  Google Scholar 

  31. M. Daoud, A. Coniglio, J. Phys. A 14 : L301, (1981)

    Article  CAS  Google Scholar 

  32. S. Roux, C.R. Ac. Sci. (Paris) 301, 367 (1985).

    Google Scholar 

  33. F. Family, A Coniglio, J. Physique Lett.46 : 9 (1985).

    Article  Google Scholar 

  34. C. Allain, L. Salome, Macromolecules, 20 : 2597, (1987).

    Article  Google Scholar 

  35. M. Rubinstein, R. H. Colby, J. R. Gillmor, inSpace-time organization in Macromolecular fluids, Springer series in Chemical Physics 51 : 66, (1989).

    Article  CAS  Google Scholar 

  36. M. Adam, M. Delsanti, J. P. Munch, D. Durand, J. Physique 48,1809(1987).

    Article  CAS  Google Scholar 

  37. M. Adam, M. Delsanti, D. \Durand, Macromolecules 18, 2285 (1985).

    Article  CAS  Google Scholar 

  38. B. Gauthier-Manuel, E. Guyon, J. Physique Lett. 41, 503 (1980).

    Article  CAS  Google Scholar 

  39. M. Adam, M. Delsanti, D. Durand, G. Hild, J. P. Munch, Pure Appl. Chem. 53 : 1489, (1981).

    Article  CAS  Google Scholar 

  40. J. E. Martin , D. Adolf, J. Wilcoxon , Phys. Rev. Lett, 61 : 2620, (1988), Phys. Rev.A39: 1325,(1989).

    Article  CAS  Google Scholar 

  41. A. L. Efros , B. I. Shklovskii , Physica Status Solidi , B76 , 475 , (1976).

    Article  Google Scholar 

  42. D. Durand, M. Delsanti, M. Adam, J. M. Luck, Europhys. Lett. 3 : 297, (1987).

    Article  CAS  Google Scholar 

  43. M. Axelos, M. Kolb, Phys. Rev. Lett., 64 :1457, (1990).

    Article  CAS  Google Scholar 

  44. D. Adolf, J. E. Martin , J. Wilcoxon, Macromolecules, 23 :527, (1990).

    Article  CAS  Google Scholar 

  45. J.D. Ferry, Viscoelastic Properties of Polymers, (1980) J. Wiley, N.Y.

    Google Scholar 

  46. W. F. Shi, W. B. Zang, C. M. Sorensen, unpublished.

    Google Scholar 

  47. D. Adolf, J. E. Martin , Macromolecules, 23 : 3700, (1990).

    Article  CAS  Google Scholar 

  48. M. Adam, M. Delsanti, J. P. Munch, Phys Rev. Lett. 61 : 706, (1988).

    Article  CAS  Google Scholar 

  49. M. Daoud, J. Klafter, J. Phys. A23, L981, (1990).

    Google Scholar 

  50. J. E. Martin, J. Wilcoxon, J. Odinek, Phys Rev. A43 : 858, (1991).

    Google Scholar 

  51. P. G. de Gennes, J. Physique Lett.,38 : 355 , (1977) .

    Article  Google Scholar 

  52. M. Daoud , J. de Phys. Lett. 40 : 201 , (1979).

    Article  CAS  Google Scholar 

  53. I. Webman, J. Jortner, M. H. Cohen, Phys. Rev. B16 : 2593, (1977).

    Google Scholar 

  54. F. Chambon, H. H. Winter, J. Rheology, 31 : 683, (1987).

    Article  CAS  Google Scholar 

  55. M. Antonietti, private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Daoud, M. (1992). Fractal Properties of Branched Polymers. In: Aharoni, S.M. (eds) Synthesis, Characterization, and Theory of Polymeric Networks and Gels. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3016-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3016-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6314-9

  • Online ISBN: 978-1-4615-3016-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics