Skip to main content

Abstract

Controlled partial oxidation of hydrocarbons (alkanes, alkenes and aromatics) is the single most important technology for converting petrochemical feedstocks to industrial organic chemicals [1]. For economic reasons, these processes predominantly involve the use of molecular oxygen (dioxygen) as the primary oxidant. The success of these processes depends largely on the use of metal catalysts to promote both the rate of reaction and the selectivity to partial oxidation products. Both gas phase and liquid phase oxidations, employing heterogeneous and homogeneous catalysts, respectively, are practiced industrially. In biological systems a broad range of selective oxidations of hydrocarbon substrates by dioxygen are catalyzed by metalloenzymes, appropriately known as oxygenases [2,3]. A common feature of most of these processes is the involvement of a multivalent transition metal ion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. R.A. Sheldon and J.K. Kochi, “Metal-Catalyzed Oxidations of Organic Compounds”, Academic Press, New York, 1981.

    Google Scholar 

  2. O. Hayaishi, ed., “Oxygenases”, Academic Press, New York, 1962.

    Google Scholar 

  3. O. Hayaishi, ed., “Molecular Mechanisms of Oxygen Activation”, Academic Press, New York, 1974.

    Google Scholar 

  4. L.I. Simandi, “Catalytic Activation of Dioxygen by Metal Complexes”, Kluwer, Amsterdam, 1992.

    Book  Google Scholar 

  5. D.T. Sawyer, “Oxygen Chemistry”, Oxford University Press, Oxford, 1991.

    Google Scholar 

  6. A.E. Martell and D.T. Sawyer eds., “Oxygen Complexes and Oxygen Activation by Transition Metals”, Plenum, New York, 1987

    Google Scholar 

  7. M. Chanon, M. Julliard, J. Santamaria and F. Chanon, New J. Chem. 16:171–201 (1992).

    CAS  Google Scholar 

  8. J.L. Bolland, Q. Rev. Chem. Soc. 3:1 (1949)

    Article  CAS  Google Scholar 

  9. L. Bateman, ibid. 8:147 (1954).

    CAS  Google Scholar 

  10. O. Hayaishi, M. Katagari and S. Rothberg, J. Am. Chem. Soc. 77:5450 (1950).

    Article  Google Scholar 

  11. H.S. Mason, W.L. Fowlks and E. Peterson, J. Am. Chem. Soc. 77:2914 (1955).

    Article  CAS  Google Scholar 

  12. S. Udenfriend, C.T. Clark, J. Axelrod and B.D. Brodie, J. Biol. Chem. 208:731 (1954).

    PubMed  CAS  Google Scholar 

  13. H. Mimoun, in: “quot Comprehensive Coordination Chemistry”, Vol. 6, G. Wilkinson, R.D. Gillard and J.A. McCleverty, eds., Pergamon, Oxford, 1987, pp. 317–410.

    Google Scholar 

  14. P. Mars and D.W. van Krevelen, Chem. Eng. Sci. ,Spec. Suppl. 3:41–57 (1954).

    CAS  Google Scholar 

  15. For reviews see: L. Vaska, Acc. Chem. Res. 9:175 (1976)

    Article  CAS  Google Scholar 

  16. J.S. Valentine, Chem. Rev. 73:235 (1973)

    Article  CAS  Google Scholar 

  17. E.C. Niederhoffer, J.H. Timmons and A.E. Martell, Chem. Rev. 84:137–203 (1984).

    Article  CAS  Google Scholar 

  18. J.P. Collman, M. Kubota and J.W. Hosking, J. Am. Chem. Soc. 89:4809 (1967).

    Article  CAS  Google Scholar 

  19. E.W. Stern, J. Chem. Soc., Chem. Commun. 736 (1970).

    Google Scholar 

  20. H. Kropf and K. Knaak, Tetrahedron 28:1143 (1972) and references cited therein.

    Article  CAS  Google Scholar 

  21. R.A. Sheldon, J. Chem. Soc., Chem. Commun. 788 (1971).

    Google Scholar 

  22. W.J.T. van Tilborg and A.D. Vreugdenhil, Tetrahedron 31:2825 (1975).

    Article  Google Scholar 

  23. A. Fusi, R. Ugo, F. Fox, A. Pasini and S. Cenini, J. Organometal. Chem. 22:219 (1970).

    Article  Google Scholar 

  24. R.A. Sheldon and J.A. van Doom, J. Organometal. Chem. 94:115 (1975).

    Article  CAS  Google Scholar 

  25. C. Dudley, G. Read and P.J.C. Walker, J. Chem. Soc., Dalton Trans. 883 (1977).

    Google Scholar 

  26. H. Mimoun, J. Mol. Catal. 7:1 (1980)

    Article  CAS  Google Scholar 

  27. H. Mimoun, M.M. Perez Machirant and I. Seree de Roch, J. Am. Chem. Soc. 100:5437 (1978).

    Article  Google Scholar 

  28. R.S. Drago, J. Am. Chem. Soc. 107:2898 (1985).

    Article  CAS  Google Scholar 

  29. D.E. Hamilton, R.S. Drago and A. Zombek, J. Am. Chem. Soc. 109:374 (1987).

    Article  CAS  Google Scholar 

  30. A. Nishinaga, Tetrahedron Lett. 29:6309 (1988).

    Article  CAS  Google Scholar 

  31. For an excellent recent review see R. Drago, Coord. Chem. Rev. 117:185–213 (1992).

    Article  CAS  Google Scholar 

  32. M. Pizzotti, S. Cenini and G. La Monica, Inorg. Chim. Acta 33:161 (1978).

    Article  Google Scholar 

  33. H.M. van Dort and H.J. Geursen, Recl. Trav. Chim. Pays-Bos 86:520 (1967).

    Article  Google Scholar 

  34. A. Nishinaga and H. Tomita, J. Mol. Catal. 7:179 (1980).

    Article  CAS  Google Scholar 

  35. V.M. Kothari and J.J. Tazuma, J. Catal. 41:180 (1976).

    Article  CAS  Google Scholar 

  36. C.L. Bailey and R.S. Drago, Coord. Chem. Rev. 79:321 (1987).

    Article  CAS  Google Scholar 

  37. M. Constantini, A. Dromard, M. Jouffret, B. Brossard and J. Varagnat, J. Mol. Catal. 7:89 (1980).

    Article  Google Scholar 

  38. A. Nishinaga, Chem. Lett 273 (1975).

    Google Scholar 

  39. A. Nishinaga, T. Tojo and T. Matsura, J. Chem. Soc., Chem. Commun. 896 (1974).

    Google Scholar 

  40. J. Green and H. Dalton, J. Biol. Chem. 264:17698 (1989).

    PubMed  CAS  Google Scholar 

  41. J.E. Baldwin, in “Recent Advances in Chemistry of Beta-Lactam Antibiotics”, A.G. Brown and S.M. Roberts, eds., The Royal Society of Chemistry, 1985, pp. 62–85.

    Google Scholar 

  42. P.R. Ortiz de Montellano, ed., “Cytochrome P-450: Structure, Mechanism and Biochemistry”, Plenum, New York, 1986.

    Google Scholar 

  43. P.N. White, Bioorg. Chem. 18:440–456 (1990).

    Article  CAS  Google Scholar 

  44. M.J. Gunter and P. Turner, Coord. Chem. Rev. 108:115–161 (1991).

    Article  CAS  Google Scholar 

  45. G.A. Hamilton, J. Am. Chem. Soc. 86:3391 (1964).

    Article  CAS  Google Scholar 

  46. V. Ullrich and H.J. Staudinger, in: “quot Biological and Chemical Aspects of Monooxygenases”, K. Block and O. Hayaishi, eds., Maruzen, Tokyo, 1966, pp. 235–249.

    Google Scholar 

  47. For key references see J.P. Collman, T.R. Halpert and K.S. Suslick, in: “quotm Metal Ion Activation of Dioxygen”, T.G. Spiro, ed., Wiley, New York, 1980, pp. 1–72

    Google Scholar 

  48. M. Momenteau, Bull. Soc. Chim. Belg. 100:731 (1991).

    Article  CAS  Google Scholar 

  49. E.G. Hrycay, J.A. Gustafsson, M. Ingelman-Sundberg and L. Ernster, Biochem. Biophys. Res. Commun. 66:209 (1975) and references cited therein

    Article  PubMed  CAS  Google Scholar 

  50. see also G.D. Nordblum, R.E. White and M.J. Coon, Arch. Biochem. Biophys. 175:524 (1976).

    Article  Google Scholar 

  51. F. Lichtenberger, W. Nastainczyk and V. Ullrich, Biochem. Biophys. Res. Commun ,70:939 (1976).

    Article  PubMed  CAS  Google Scholar 

  52. J.T. Groves, T.E. Nemo and R.S. Myers, J. Am. Chem. Soc. 101:1032–1033 (1979)

    Article  CAS  Google Scholar 

  53. see also J.T. Groves, W.J. Kruper, T.E. Nemo and R.S. Myers, J. Mol. Catal. 7:169–177 (1980)

    Article  CAS  Google Scholar 

  54. C.K. Chang and M.S. Kuo, J. Am. Chem. Soc. 101:3413 (1979).

    Article  CAS  Google Scholar 

  55. J.T. Groves and W.J. Kruper, J. Am. Chem. Soc. 101:7613 (1979).

    Article  CAS  Google Scholar 

  56. C.L. Hill and B.C. Schardt, J. Am. Chem. Soc. 102:6374 (1980)

    Article  CAS  Google Scholar 

  57. J.T. Groves, W.J. Kruper and R.C. Haushalter, J. Am. Chem. Soc. 102:6375 (1980).

    Article  CAS  Google Scholar 

  58. For an excellent recent review see B. Meunier, Chem. Rev. 92:1411–1456 (1992)

    Article  CAS  Google Scholar 

  59. see also D. Mansuy, Pure Appl. Chem. 59:759 (1987)

    Article  CAS  Google Scholar 

  60. K.A. Jorgensen, Chem. Rev. 89:431 (1989)

    Article  Google Scholar 

  61. D. Ostovic and T.C. Bruice, Acc. Chem. Res. 25:314–320 (1992).

    Article  CAS  Google Scholar 

  62. I.Tabushi and N. Koga, Tetrahedron Lett. 3681 (1979)

    Google Scholar 

  63. E. Guilmet and B. Meunier, Tetrahedron Lett. 4449 (1980)

    Google Scholar 

  64. J.P. Collman, T. Kodadek, S.A. Raybuck and B. Meunier, Proc. Natl. Acad. Sci. USA 80:7039 (1983)

    Article  PubMed  CAS  Google Scholar 

  65. J.A.S.J. Razenberg, R.J.M. Nolte and W. Drenth, J. Chem. Soc., Chem. Commun. 277 (1986)

    Google Scholar 

  66. S. Banfi, F. Montanari and S. Quici, J. Org. Chem. 54:1850 (1989).

    Article  CAS  Google Scholar 

  67. D. Mansuy, P. Battioni and J.P. Renaud, J. Chem. Soc., Chem. Commun. 1255 (1984).

    Google Scholar 

  68. D. Mansuy, P. Battioni, J.P. Renaud and J.F. Bartoli, J. Chem. Soc., Chem. Commun. 888 (1985).

    Google Scholar 

  69. D. Mansuy, P. Battioni, J.P. Renaud, J.F. Bartoli and M. Reina-Artiles, J. Am. Chem. Soc. 110:8462 (1988)

    Article  Google Scholar 

  70. see also L.C. Yuan and T.C. Bruice, J. Am. Chem. Soc. 108:1643 (1986).

    Article  CAS  Google Scholar 

  71. T.C. Bruice and M.W. Nee, J. Am. Chem. Soc. 104:6123 (1982).

    Article  Google Scholar 

  72. B. Meunier, B. de Poorter and M. Ricci, Tetrahedron Lett 4459 (1985).

    Google Scholar 

  73. C. Querci and M. Ricci, J. Chem. Soc., Chem. Commun. 889 (1989).

    Google Scholar 

  74. For a review see I. Tabushi, Coord. Chem. Rev. 86:1 (1988).

    Article  CAS  Google Scholar 

  75. S. Tsuchiya and M. Seno, Chem. Lett. 263 (1989)

    Google Scholar 

  76. see also P. Battioni, O. Brigaud, H. Desvraux, D. Mansuy and T.G. Traylor, Tetrahedron Lett. 32:2893 (1991).

    Article  CAS  Google Scholar 

  77. T.L. Siddall, N. Miyaura, J.C. Huffman and J.K. Kochi, J. Chem. Soc., Chem. Commun. 1185 (1983)

    Google Scholar 

  78. K. Srinivasan, P. Michaud and J.K. Kochi, J. Am. Chem. Soc. 108:2309 (1986)

    Article  PubMed  CAS  Google Scholar 

  79. J.D. Koola and J.K. Kochi, J. Org. Chem. 52:4545 (1987)

    Article  CAS  Google Scholar 

  80. E.G. Samsel, K. Srinivasan and J.K. Kochi, J. Am. Chem. Soc. 107:7606 (1985).

    Article  CAS  Google Scholar 

  81. H. Yoon and C.J. Burrows, J. Am. Chem. Soc. 110:4087 (1988).

    Article  CAS  Google Scholar 

  82. W. Zhang, J.L. Loeback, S.R. Wilson and E.N. Jacobsen, J. Am. Chem. Soc. 112:2801 (1990).

    Article  CAS  Google Scholar 

  83. J.T. Groves and R.S. Myers, J. Am. Chem. Soc. 105:5791 (1983)

    Article  CAS  Google Scholar 

  84. S. O’Malley and T. Kodadek, ibid. 111:9116 (1989)

    Google Scholar 

  85. Y. Naruta, F. Tani, N. Ishihara and K. Maruyama, ibid. 113:6865–6872 (1991).

    CAS  Google Scholar 

  86. See. D.H.R. Barton and D. Doller, Acc. Chem. Res. 25:504–512 (1992) and references cited therein

    Article  CAS  Google Scholar 

  87. see also C. Knight and M.J. Perkins, J. Chem. Soc. ,Chem. Commun. 925 (1991).

    Google Scholar 

  88. D.H.R. Barton, M.J. Gastiger and W.B. Motherwell, J. Chem. Soc., Chem. Commun. 41–43 (1983).

    Google Scholar 

  89. See also H.C. Tung, C. Kang and D.T. Sawyer, J. Am. Chem. Soc. 114:3445 (1992) and references cited therein.

    Article  CAS  Google Scholar 

  90. J.T. Groves and R. Quinn, J. Am. Chem. Soc. 107:5790 (1985).

    Article  CAS  Google Scholar 

  91. P.E. Ellis and J.E. Lyons, Catal. Lett. 3:389–398 (1989)

    Article  CAS  Google Scholar 

  92. J.E. Lyons and P.E. Ellis, Catal. Lett. 8:45–52 (1991).

    Article  CAS  Google Scholar 

  93. R.A. Sheldon, CHEMTECH 566–675 (1991) and references cited therein.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sheldon, R.A. (1993). A History of Oxygen Activation: 1773–1993. In: Barton, D.H.R., Martell, A.E., Sawyer, D.T. (eds) The Activation of Dioxygen and Homogeneous Catalytic Oxidation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3000-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3000-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6307-1

  • Online ISBN: 978-1-4615-3000-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics