Skip to main content

New Metal Complex Oxygen Absorbents for the Recovery of Oxygen

  • Chapter

Abstract

Emerging non-cryogenic technologies for the separation of air use zeolites and microporous “molecular sieve” carbons as moderately selective nitrogen and oxygen adsorbents, respectively.1,2 While the zeolites have a thermodynamic affinity for N2, use of carbons relies on a kinetic selectivity for the passage of oxygen into the micropores. It is well known that certain coordination compounds of cobalt and iron reversibly react with oxygen under near ambient conditions.3,4 Since this is a chemical rather than a physical interaction as is seen with zeolites and carbons, it should be possible to use such metal complexes as O2 equilibrium sorbents for air separation. We have been conducting a long term research effort to prepare such metal complex oxygen carriers for use in future generation non-cryogenic air separation devices.5 The primary interest in such complexes is in their use in pressure or temperature swing processes for the production of inert gas (N2,Ar) and oxygen.6,7 For these applications, the oxygen complex could either be used as a circulating liquid or as a solid sorbent. In order to be useful in a commercial process an oxygen complex has to satisfy several requirements. It must (a) bind O2 rapidly and reversibly, (b) have a high stability (>1 year lifetime), and (c) be accessible via simple synthetic techniques at minimal cost.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. J. Schroter and H. Jungten, Gas Separation by Pressure Swing Adsorption Using Carbon Molecular Sieves, in: “Adsorption Science and Technology, NATO ASI Series E,” A. E. Rodrigues et al, Ed., Kluwer Academic Publishers, the Netherlands (1989).

    Google Scholar 

  2. S. Sircar, Pressure Swing Adsorption Technology in: “Adsorption Science and Technology, NATO ASI Series E,” A. E. Rodrigues et al, Ed., Kluwer Academic Publishers, The Netherlands (1989).

    Google Scholar 

  3. R. D. Jones, D. A. Summerville, and F. Basolo, Chem. Rev., 79:139 (1979).

    Article  CAS  Google Scholar 

  4. E. C. Niederhoffer, J. H. Timmons, and A. E. Martell, Chem. Rev., 84:137 (1984).

    Article  CAS  Google Scholar 

  5. J. A. T. Norman, G. P. Pez, and D. A. Roberts, Reversible Complexes for the Recovery of Dioxygen, in: “Oxygen Complexes and Oxygen Activation by Transition Metals,” A. E. Martell et al, Ed., Springer Science+Business Media New York (1988).

    Google Scholar 

  6. S. P. Nandi and P. L. Walker, Sep. Sci., 11:441 (1976).

    Article  CAS  Google Scholar 

  7. H. Jungten, K. Knoblauch, and K. Hardner, Fuel 60:817 (1981).

    Article  Google Scholar 

  8. D. H. Busch, Synthetic Dioxygen Carriers for Dioxygen Transport, in: “Oxygen Complexes and Oxygen Activation by Transition Metals,” A. E. Martell et al, Ed., Springer Science+Business Media New York (1988).

    Google Scholar 

  9. J. P. Collman, T. R. Halpert, and K. S. Suslick, O2 Binding to Heme Proteins and Their Synthetic Analogs, in: “Metal Ion Activation of Dioxygen,” T. G. Spiro, Ed., John Wiley, New York (1980).

    Google Scholar 

  10. A. E. Martell, A. K. Basak, and C. J. Raleigh, Pure & Appl. Chem., 60:1325 (1988).

    Article  CAS  Google Scholar 

  11. R. F. Bogucki, G. McLendon, and A. E. Martell, J. Am. Chem. Soc., 98:3202 (1976).

    Article  CAS  Google Scholar 

  12. D. H. Huchital and A. E. Martell, Inorg. Chem., 13:2966 (1974).

    Article  CAS  Google Scholar 

  13. S. Imamura and J. H. Lunsford, Langmuir, 1:326 (1985).

    Article  CAS  Google Scholar 

  14. A. Rheingold, University of Delaware, Newark, Delaware 19716.

    Google Scholar 

  15. A. J. Bard, L. R. Faulkner, “Electrochemical Methods: Fundamentals and Applications,” Wiley, New York (1980).

    Google Scholar 

  16. R. J. Motekaitis and A. E. Martell, J. Am. Chem. Soc., 110:7715 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ramprasad, D., Gilicinski, A.G., Markley, T.J., Pez, G.P. (1993). New Metal Complex Oxygen Absorbents for the Recovery of Oxygen. In: Barton, D.H.R., Martell, A.E., Sawyer, D.T. (eds) The Activation of Dioxygen and Homogeneous Catalytic Oxidation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3000-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3000-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6307-1

  • Online ISBN: 978-1-4615-3000-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics