Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 344))

Abstract

Platelets contain multiple low molecular weight GTP-binding proteins which share strong sequence similarity to ras including rap, rac, ral, and rho (Nagata et al., 1989; Polakis et al., 1989). In addition, platelets contain regulatory molecules which both control the hydrolysis of GTP bound to the protein and/or promote the exchange of GDP for GTP (Hart et al., 1991). Surprisingly, platelets do not contain the ras molecule in a significant amount, yet possess high levels of the ras regulatory molecule rasGAP. RasGAP has been shown to bind rapla with high affinity without increasing its GTPase activity (Frech et al., 1990). It is generally accepted that in addition to rasGAP acting as a GTPase activating protein, it may function as the downstream target molecule of ras (Hall, 1990a). For this reason, the role of rasGAP and rapl in platelets is intriguing given that platelets also contain the GTPase activating protein specific for rapl. Recent data has proposed that this complex interaction may play a controling role in platelet signal transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, D., Koch, C. A., Grey, L., Ellis, C., Moran, M. F., and Pawson, T. 1990, Binding of SH2 domains of phospholipase C-γl, GAP, and Src to activated growth factor receptors, Science 250:979.

    Article  PubMed  CAS  Google Scholar 

  • Araki, S., Kikuchi, A., Hata, Y., Isomura, M., and Takai, Y. 1990, Regulation of reversible binding of smg p25A, a ras p21-like GTP-binding protein, to synaptic plasma membranes and vesicles by its specific regulatory protein, GDP dissociation inhibitor, J. Biol. Chem. 265:13007.

    PubMed  CAS  Google Scholar 

  • Burstein, E. S., Linko-Stentz, K., Lu, Z., and Macara, I. G. 1991, Regulation of the GTPase activity of the ras-like protein p25rab3a J Biol. Chem. 266:2689.

    PubMed  CAS  Google Scholar 

  • Downward, J. 1990a, The ras superfamily of small GTP-binding proteins, Trends Eiochem. Sci. 15:469.

    Article  Google Scholar 

  • Downward, J., Riehl, R., Wu, L., and Weinberg, R. A. 1990b, Identification of a nucleotide exchange-promoting activity for p21ras, Proc. Natl. Acad. Sci. USA. 87:5998.

    Article  CAS  Google Scholar 

  • Frech, M., John, J., Pizon, V., Chardin, P., Tavitian, A., Clark, R., McCormick, F., and Wittinghofer, A. 1990, Inhibition of GTPase activating protein stimulation of Ras-p21 GTPase by the Kiev-1 gene product, Science 249:169.

    Article  PubMed  CAS  Google Scholar 

  • Gideon, P., John, J., Frech, M., Lautwein, A., Clark, R., Schemer, J. E., and Wittinghofer, A. 1992, Mutational and kinetic analyses of the GTPase-activating protein (GAP)-p21 Interaction: The C-terminal domain of GAP is not sufficient for full activity, Mol. Cell Biol. 12:2050.

    PubMed  CAS  Google Scholar 

  • Halenback, R., Crosier, W. J., Clark, R., McCormick, F., and Koths, K. 1990, Purification, characterization and western blot analysis of human GTPase-activating protein from native and recombinant sources, J. Riol. Chem. 265:21922.

    Google Scholar 

  • Hall, A. 1990a, ras and GAP-who’s controlling whom? Cell 61:921.

    Article  CAS  Google Scholar 

  • Hall, A. 1990b, The cellular functions of small GTP-binding proteins, Science 249:635.

    Article  CAS  Google Scholar 

  • Hancock, J. F., Magee, A. I., Childs, J.E., and Marshall, C. J., 1989, All ras proteins are polyisoprenylated but only some are palmitoylated, Cell 57:1167.

    Article  PubMed  CAS  Google Scholar 

  • Hart, M. J., Shinjo, K., Hall. A., Evans, T., and Cerione R, A. 1991, Identification of the human platelet GTPase activating protein for the CDC42Hs protein, J. Biol. Chem. 266:20840.

    PubMed  CAS  Google Scholar 

  • Koch, C. A., Anderson, D., Moran, M. F., Ellis, C., and Pawson, T. 1991, SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins, Science 252:668.

    Article  PubMed  CAS  Google Scholar 

  • Lapetina, E. G., Lacal, J. C., Reep, B. R. and Molina, L. yV. 1989, A ras-related protein is phosphorylated and translocated by agonists that increase cAMP levels in human platelets, Proc. Natl. Acad. Sci. USA 86:3131.

    Article  PubMed  CAS  Google Scholar 

  • Lapetina, E. G. 1990, The signal transduction induced by thrombin in human platelets, FEES Letts. 286:400.

    Article  Google Scholar 

  • Lazarowski, E. R., Lacal, J. C., and Lapetina, E. G. 1989, Agonist-induced phosphorylation of an immunologically ras-related protein in human erythroleukemia cells, Eiochem. Biophys. Res. Comm. 161:972.

    Article  CAS  Google Scholar 

  • Lazarowski, E. R., Winegar, D. A., Nolan, R. D., Oberdisse, E., and Lapetina, E. G. 1990, Effect of protein kinase A on inositide metabolism and rapt G-protein in human erythroleukemia cells, J. Rio!. Chem. 265:13118.

    CAS  Google Scholar 

  • McCormick, F. 1989, ras GTPase activating protein: signal transmitter and signal terminator, Cell 56:5.

    Article  PubMed  CAS  Google Scholar 

  • Molina, L. yV., Ohmstede, C.-A., and Lapetina, E. G. 1990, Properties of the exchange rate of guanine nucleotides to the novel rap2b protein. Eiochem. Biophys. Res. Comm. 171:319.

    Article  Google Scholar 

  • Moran, M. F., Koch, C. A., Anderson, D., Ellis, C., England, L., Martin, G. S., and Pawson, T. 1990, Src homology region 2 domains direct protein-protein interactions in signal transduction, Proc. Natl. Acad, Sci. USA 87:8622.

    Article  CAS  Google Scholar 

  • Nagata, K.-I., Nagao, S., and Nozawa, Y. 1989, Low Mr GTP-binding proteins in human platelets; cyclic AMP-dependent protein kinase phosphorylates m22КG(I) in membrane but not c21KG in cytosol, Biochem. Biophys. Res. Comm. 160:235.

    Article  PubMed  CAS  Google Scholar 

  • Ohmstede, C.-A., Farrell, F. X., Reep, B. R., Clemetson, K. J., and Lapetina, E. G. (1990). Rap-2B: A ras-related GTP-binding protein from platelets, Proc. Natl. Acad. Sci USA. 87:6527.

    Article  PubMed  CAS  Google Scholar 

  • Pizon, V., Chardin, P., Lerosey, I., Olofsson, B. and Tavitian, A. 1988, Human cDNAs rap1 and rap2 homologous to the Drosophila gene Dras3 encode proteins closely related to ras in the “effector” region, Oncogene 3:201.

    PubMed  CAS  Google Scholar 

  • Polakis, P. G., Weber, R. F., Nevins, B., Didsbury, J. R., Evans, T., and Synderman, R. 1989, Identification of the ral and racl gene products, low molecular mass GTP-binding proteins from human platelets, J. Biol. Chem. 264:16383.

    PubMed  CAS  Google Scholar 

  • Polakis, P. G., Rubinfeld, B., Evans T., and McCormick, F. (1991). Purification of plasma membrane-associated GTPase-activating protein specific for rapt/Krev-1 from HL-60 cells, Proc. Natl. Acad. Sci. USA 88:239.

    Article  PubMed  CAS  Google Scholar 

  • Queue, F. W. and Wojchowski D. M. 1991, Proliferative action of erythropoietin is associated with rapid protein tyrosine phosphorylation in responsive B6SUt.EP cells, J. Biol. Chem. 266:609.

    Google Scholar 

  • Rubinfeld, B., Munemitsu, S., Clark, R., Conroy, L., Watt, K., Crosier, W. J., McCormick, F. and Polakis, P. 1991, Molecular cloning of a GTPase activating protein specific for the Krev-1 protein p21rap 1, Cell 65:1033.

    Article  PubMed  CAS  Google Scholar 

  • Seidel-Dugan, C., Meyer, B. E., Thomas, S. M. and Brugge, J. S. 1992, Effects of SH2 and SH3 deletions on the functional activities of wild-type and transforming variants of c-Src, Mol. Cell. Biol. 12:1835.

    PubMed  CAS  Google Scholar 

  • Siess, W., Winegar, D. A. and Lapetina, E. G. 1990, Raplb is phosphorylated by protein kinase A in intact human platelets, Biochem. Biophys. Res. Comm. 170:944.

    Article  PubMed  CAS  Google Scholar 

  • Settleman, J., Narasimhan, V., Foster, L. C. and Weinberg, R. A. 1992, Molecular cloning of cDNAs encoding the GAP-associated protein p190: Implications for a signaling pathway from ras to the nucleus, Cell 69:539.

    Article  PubMed  CAS  Google Scholar 

  • Torti, M., Bencke Marti, K., Altschuler, D., Yamamoto, K. and Lapetina, E. G. 1992, Erythropoietin induces p2lras activation and p120GAP tyrosine phosphorylation in human erythroleukemia cells, J. Biol. Chem. 267:8293.

    PubMed  CAS  Google Scholar 

  • Torti, M. and Lapetina, E. G. 1992, The role of raplb and p2lras GTPase-activating protein in the regulation of phospholipase C-γ1 in human platelets, Proc. Natl. Acad. Sci. USA. 891:7796.

    Article  Google Scholar 

  • Trahey, M., Wong, G., Halenbeck, R., Rubinfeld, B., Martin, G. A., Lander, M., Long, C. M., Crosier, W. J., Watt, K., Koths, K. and McCormick, F. 1988, Molecular cloning of two types of GAP complementary DNA from human placenta, Science 242:1697.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, U. S., Dixon, R. A. F., Schaber, M. D., Diehl, R. E., Marshall, M. S., Scolnick, E. M., Sigal, I. S. and Gibbs, J. B. 1988, Cloning of bovine GAP and its interaction with oncogenic ras p21, Nature 335:90.

    Article  PubMed  CAS  Google Scholar 

  • Wong, G., Muller, O., Clark, R., Conroy, L., Moran, M. F., Polakis, P. and McCormick, F, 1992, Molecular cloning and nucleic acid binding properties of the GAP-associated tyrosine phosphoprotein p62, Cell 69:551.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lapetina, E.G., Farrell, F.X. (1993). RAP1B and Platelet Function. In: Authi, K.S., Watson, S.P., Kakkar, V.V. (eds) Mechanisms of Platelet Activation and Control. Advances in Experimental Medicine and Biology, vol 344. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2994-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2994-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6304-0

  • Online ISBN: 978-1-4615-2994-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics