Skip to main content

Cytoskeletal Interactions of Raplb in Platelets

  • Chapter
Mechanisms of Platelet Activation and Control

Abstract

Low molecular weight GTP binding proteins (G proteins) are membrane-associated proteins which reversibly bind guanine nucleotides and regulate cellular processes, such as growth and differentiation (Evans et al., 1991; Macara, 1991). Members of this superfamily of proteins show considerable sequence homology and share structural features, including an effector domain which interacts with GTPase activating proteins or GAPs and post-translational modification at the carboxy terminus by polyisoprenyl groups, either farnesyl or geranyl-geranyl (Maltese, 1990; Gibbs, 1991). To date, more than 50 low molecular weight G proteins in four subfamilies have been reported. The prototype for this group of proteins is p21ras the 21 kDa protein product of the ras protooncogene. At least seven distinct G proteins are present in platelets (Bhullar & Haslam, 1988; Ohmori et al., 1988; Polakis et al., 1989; Polakis et al., 1989; Farrell et al., 1990; Nemoto et al., 1992) (Table I).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abo, A., Pick, E., Hall, A., Totty, N., Teahan, C. and Segal, A.W. 1991, Activation of NADPH oxidase involved the small GTP-binding protein p21rac, Nature 353:668.

    Article  PubMed  CAS  Google Scholar 

  • Balch, W.E. 1990, Small GTP binding proteins in vesicular transport, Trends Biochem. Soc. 15:473.

    Article  Google Scholar 

  • Bhullar, R.P. and Haslam, R.J. 1988, Gn-proteins are distinct from ras p21 and other known low molecular mass GTP-binding proteins in platelets, FEES Letts. 237:168.

    Article  CAS  Google Scholar 

  • Evans, T., Hart, M.-J., and Cerione, R.A. 1991, The ras superfamilies: Regulatory proteins and post-translational modifications, Curr. Opin. Cell Biol. 3:185.

    Article  PubMed  CAS  Google Scholar 

  • Farrell, F.X., Ohmstede, C.A., Reep, B.R. and Lapetina, E.G. 1990, cDNA sequence of a new ras-related gene (rap2b) isolated from human platelets with sequence homology to rap2, Nucl. Acids Res. 18:4281.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, T.H., Gatling, M.N., Lacal, J.C. and White II, G.C. 1990, Rap lb, a cAMP-dependent protein kinase substrate, associates with the platelet cytoskeleton. J. Biol. Chem. 265: 19405.

    Google Scholar 

  • Fischer, T.H., Collins, J.H. and White, II, G.C. 1991, The localization of the cAMP-dependent protein kinase phosphorylation site in the platelet ras protein, raplb, FEES Letts. 282:173.

    Article  Google Scholar 

  • Gibbs, J.B., Ras C-terminal processing enzymes, New drug targets, Cell 65:1.

    Google Scholar 

  • Hata, U., Kaibuchi, K., Kawamura, S., Hiroyoshi, M., Shirataki, H. and Takai, Y. 1991, Enhancement of the actions of smg p21 GDP/GTP exchange protein by the protein kinase A-catalyzed phosphorylation of smg p21, J. Biol. Chem. 266:6571.

    PubMed  CAS  Google Scholar 

  • Horvath, A.R., Muszbek, L. and Kellie, S. 1992, Translocation of pp60c-src to the cytoskeleton during platelet aggregation, EMBO J. 11:855.

    PubMed  CAS  Google Scholar 

  • Kawata, M., Farnsworth, C.C., Yoshida, Y., Gelb, M.H., Glomset, J.A. and Takai, Y. 1990, Posttranslationally processed structure of the human platelet protein smg p21B: Evidence for geranylgeranylation and carboxyl methylation of the C-terminal cysteine, Proc. Natl. Acad. Sci. 87:8960.

    Article  PubMed  CAS  Google Scholar 

  • Knaus, V.G., Heyworth, P.G., Evans, T., Cumutte, J.T. and Bokoch, G. 1991, Regulation of phagocyte oxygen radical production by the GTP-binding protein rac-2, Science 254:1512.

    Article  PubMed  CAS  Google Scholar 

  • Lacal, J.-C. and Aronson, S.A. 1986, Ras p21 deletion mutants and monoclonal antibodies as tools for localization of regions relevant to p21 function, Proc. Natl. Acad. Sci. 83:5400.

    Article  PubMed  CAS  Google Scholar 

  • Macara, I.G. 1991, The ras superfamily of molecular switches, Cell Signalling 3:179.

    Article  PubMed  CAS  Google Scholar 

  • Maltese, W.A. 1990, Posttranslational modification of proteins by isoprenoids in mammalian cells, FASEB J. 4:3319.

    CAS  Google Scholar 

  • Menashi, S., Weintroub, H. and Crawford, N.G. 1981, Characterization of human platelet surface and intracellular membranes isolated by free flow electrophoresis, J. Biol. Chem. 256:4095.

    PubMed  CAS  Google Scholar 

  • Nemoto, Y., Namba, T., Teru-uchi, T., Ushikubi, F. and Narumiya, S. 1992, A rho gene product in human blood platelets. I. Identification of the platelet substrate for botulinum C3 ADP-ribosylation as rhoA protein, J. Biol. Chem. 267:20916.

    PubMed  CAS  Google Scholar 

  • Newman, P.J., Hillery, C.A., Albrecht, R., Parise, L.V., Berndt, M.C., Mazurov, A.V., Dunlop, L.C., Zhang, J. and Rittenhouse, S.E. 1992, Activation dependent changes in human platelet PECAM-1: Phosphorylation, cytoskeleton association and surface membrane redistribution, J. Cell Biol. 119:239.

    Article  PubMed  CAS  Google Scholar 

  • Ohmori, T., Kikuchi, A., Yamamoto, K., Kawata, M., Kondo, J. and Takai, Y. 1988, Identification of a platelet Mr 22,000 GTP-binding proteins as the novel smg p21 gene product having the same effect domain as the ras gene product, Biochem. Biophys. Res. Comm. 157:670.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, D.R., Jennings, L.K. and Edwards, H.H. 1980, Identification of membrane proteins mediating the interaction of human platelets, J. Biol. Chem. 86:77.

    CAS  Google Scholar 

  • Polakis, P.G., Snyderman, R. and Evans, T. 1989, Characterization of G25K, a GTP-binding protein containing a novel putative nucleotide binding domain, Biochem. Biophys. Res. Comm. 160:25.

    Article  PubMed  CAS  Google Scholar 

  • Polakis, P.G., Weber, R.F., Nevins, B., Didsbury, J.R., Evans, T. and Snyderman, R. 1989, Identification of the ral and rac 1 gene products, low molecular mass GTP-binding proteins from human platelets, J. Biol. Chem. 264:16383.

    PubMed  CAS  Google Scholar 

  • Pronk, G.J., Medema, R.H., Burgering, B.M.Th., Clark, R., McCorn ick, F. and Bos, J.L. 1992, Interaction between the p2lras GTPase activating protein and the insulin receptor, J. Biol. Chem. 267:24058.

    PubMed  CAS  Google Scholar 

  • Siess, W., Winegar, D. and Lapetina, E.G. 1990, Raplb is phosphorylated by protein kinase A in intact human platelets, Biochem. Biophys. Res. Comm. 170:944.

    Article  PubMed  CAS  Google Scholar 

  • Torti, M. and Lapetina, E.G. 1992, Role of raplb and p2lras GTPase-activating protein in the regulation of phospholipase C-γ1 in human platelets, Proc. Natl. Acad. Sci. 89:7796.

    Article  PubMed  CAS  Google Scholar 

  • Torti, M., Sinigaglia, F., Ramaschi G. and Balduini, C. 1991, Platelet glycoprotein IIb-IIIa is associated with 21-kDa GTP-binding protein, Biochem. Biophys. Acta 1070:20.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Fry, M.J., Waterfield, M.D., Jaken, S., Liao, L., Fox, J.E.B. and Rittenhouse, S.E. 1992, Activation phosphoinositide 3-kinase associates with the membrane skeleton in thrombin-exposed platelets, J. Biol. Chem. 267:4686.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

White, G.C., Crawford, N., Fischer, T.H. (1993). Cytoskeletal Interactions of Raplb in Platelets. In: Authi, K.S., Watson, S.P., Kakkar, V.V. (eds) Mechanisms of Platelet Activation and Control. Advances in Experimental Medicine and Biology, vol 344. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2994-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2994-1_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6304-0

  • Online ISBN: 978-1-4615-2994-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics