Skip to main content

IGF-II in the Pathogenesis of Rhabdomyosarcoma: A Prototype of IGFs Involvement in Human Tumorigenesis

  • Chapter
Current Directions in Insulin-Like Growth Factor Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 343))

Abstract

In recent years there has been a growing interest in the role of peptide growth factors in the regulation of the biologic behavior of several human malignancies. Among those peptides that might have importance in neoplastic pathogenesis are the insulin-like growth factors I and II (IGF-I and IGF-II). These proteins have been shown to stimulate myoblast proliferation and differentiation (1), to promote nutrient uptake and to inhibit proteolysis (2, 3). IGF-II mRNA is highly expressed in human skeletal fetal muscle tissue, but it is not detectable in normal adult skeletal muscle by standard Northern analysis and in situ hybridization (4). In mouse myoblasts, IGF-I and IGF-II mRNA levels increase transiently (IGF-II > > IGF-I) within 48-72 hours of the beginning of the myogenic differentiation process. The expression of mRNA is accompanied by secretion of the peptides in the culture medium that peaks at hour 92. IGF-I receptors increase transiently, doubling by 48 hours after the onset of differentiation, while IGF-II receptors increase and remain at a higher number throughout the differentiated state (5, 6). The production of IGF-binding proteins of Mr 29,000 to 32,000 is also induced throughout differentiation (7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Florini JR, Ewton DZ, Falen SL, and Van Wyk JJ: Biphasic concentration dependeancy of stimulation of myoblast differentiation by somatomedins. Am J Physiol 250:C771–8, 1986.

    PubMed  CAS  Google Scholar 

  2. Ewton DZ, Falen SL, and Florini JR: The type II insulin-like growth factor (IGF) receptor has low affinity for IGF-I analogs: pleiotypic actions of IGFs on myoblasts are apparently mediated by the type I receptor. Endocrinology 120:115–23, 1987.

    Article  PubMed  CAS  Google Scholar 

  3. Beguinot F, Kahn CR, Moses AS, and Smith RJ: Distinct biologically active receptors for insulin, insulin-like growth factor I, and insulin-like growth factor II in cultured skeletal muscle cells. J Biol Chem 260:15892–8, 1985.

    PubMed  CAS  Google Scholar 

  4. El-Badry OM, Minniti CP, Kohn EC, Houghton PJ, Daughaday WH, and Helman LJ: Insulin-like growth factor II acts an autocrine growth and motility factor in human rhabdomyosarcoma tumors. Cell Growth Differ 1:325–31, 1990.

    PubMed  CAS  Google Scholar 

  5. Tollefsen SE, Lajara R, McCusker RH, Clemmons DR, and Rotwein P: Insulin-like growth factors (IGFs) in muscle development: expression of IGF-I, the IGF-I receptor, and the IGF binding protein during myoblast differentiation. J Biol Chem 264(3):13810–7, 1989.

    PubMed  CAS  Google Scholar 

  6. Tollefsen SE, Sadow JL, and Rotwein P: Coordinate expression of insulin-like Growth factor II and its receptor during muscle differentiation. Proc Natl Acad Sci USA 86:1543–7, 1989.

    Article  PubMed  CAS  Google Scholar 

  7. McCusker RH and Clemmons DR: Insulin-like growth factor binding protein secretion by muscle cells: Effect of cellular differentiaton and proliferation. J Cell Physiol 137:505–12, 1988.

    Article  PubMed  CAS  Google Scholar 

  8. Minniti CP, Tsokos M, Newton, Jr WA, and Helman LJ: Specific expression of insulin-like growth factor-II in rhabdomyosarcoma tumor cells. Am J Chn Pathol, in press.

    Google Scholar 

  9. Rechler MM and Nissley SP: The nature and regulation of the receptors for insulin-like growth factors. Annu Rev Physiol 47:425–42, 1985.

    Article  PubMed  CAS  Google Scholar 

  10. Lobel P, Dahms NM, and Kornfeld S: Cloning and sequence analysis of the cation-independent mannose 6-phosphate receptor. J Biol Chem 263(5):2563–70, 1988.

    PubMed  CAS  Google Scholar 

  11. Kiess W, Blickenstaff GD, Sklar MM, Thomas CL, Nissley SP, and Sahagian GC: Biochemical evidence that the type II insulin-like growth factor receptor is identical to the cation-independent mannose 6-phosphate receptor. J Biol Chem 263(19):9339–44, 1988.

    PubMed  CAS  Google Scholar 

  12. Kuli FC, Jacobs S, Su Y-F, Svoboda ME, Van Wyk JJ, and Cuatrecasas P: Monoclonal antibodies to receptors for insulin and somatomedin-C. J Biol Chem 258:6561–6, 1983.

    Google Scholar 

  13. Rohlik QT, Adams D, Kull FC, and Jacobs S: An antibody to the receptor for insulin-like growth factor inhibits the growth of MCF-7 cells in tissue culture. Biochem Biophys Res Commun 149:276–81, 1987.

    Article  PubMed  CAS  Google Scholar 

  14. Ullrich A, Gray A, Tam AW, Yang-Feng T, Tsubokawa M, Collins C, Henzel W, Le Bon T, Dathuria S, Chen E, Jacobs S, Francke U, Ramachandran J, and Fujita-Yamaguchi Y: Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J 5:2503–12, 1986.

    PubMed  CAS  Google Scholar 

  15. Rechter MM and Nissley SP: Insulin-like growth factors. In: Sporn MB and Roberts AB (eds.) Handbook of Experimental Pharmacology 95(I):317–43, Springer-Verlag, Berlin, 1990.

    Google Scholar 

  16. Ibid.

    Google Scholar 

  17. Romanus JA, Tseng Y-HL, Yang Y W-H, and Rechter MM: The 34 kilodalton insulin-like growth factor binding protein in human cerebrospinal fluid and the A673 rhabdomyosarcoma cell line are human homologous of the rat BRL-3A binding protein. Biochem Biophys Res Comm 163:875–81, 1989.

    Article  PubMed  CAS  Google Scholar 

  18. Giard DJ, Aaronson SA, Toolars GJ, Arnstein P, Kersey JH, Dosik H, and Parks WP: In vitro cultivation of human tissues: Establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst 81:1417–23, 1973.

    Google Scholar 

  19. Hossenlopt D, Seurin D, Segovia-Guinson B, Hardouin S, and Binaux M: Analysis of serum insulin-like growth factor binding proteins using Western blotting: use of the method for titration of the binding proteins and competitive binding studies. Anal Biochem 154:138, 1986.

    Article  Google Scholar 

  20. McCusker RH, Camacho-Hubner C, and Clemmons DR: Identification of the types of insulin-like growth factors binding proteins that are secreted by muscle cells in vitro. J Biol Chem 264:7795–800, 1989.

    PubMed  CAS  Google Scholar 

  21. Czech MP: Signal transmission by the insulin-like growth factors. Cell 59(2):235–8, 1989.

    Article  PubMed  CAS  Google Scholar 

  22. Nolan CM, Creek KE, Grubb JH, and Sly WS: Antibody to the phosphomannosyl receptor inhibits recycling of receptor in fibroblasts. J Cell Biochem 35(2):137–51, 1987.

    Article  PubMed  CAS  Google Scholar 

  23. Raney RB, Hays Jr DM, Tefft M, and Triche TJ: Rhabdomyosarcoma and the undifferentiated sarcomas. In: Pizzo PA and Poplack D (eds.) Principles and Practice of Pediatric Oncolgy. pp. 635–58, Philadelphia: JB Lippincott Co., 1989.

    Google Scholar 

  24. Stauli P and Weiss L: Cell locomotion and tumor penetration. Report on a workshop of the EOR TC cell surface project group. Eur J Cancer 13:1–12, 1977.

    Google Scholar 

  25. Russo RG, Foltz CM, and Liotta LA: New invasion assay using endothelial cels grown on native human basement membrane. Clin Exp Metastasis 1:115–27, 1983.

    Article  PubMed  CAS  Google Scholar 

  26. Kohn EC, Francis EA, Liotta LA, and Schiffmann E: Heterogeneity of the motility response in malignant tumor cells: a biological basis for the diversity and homing of metastatic cells. Int J Cancer 46:287–92, 1990.

    Article  PubMed  CAS  Google Scholar 

  27. Zigmond SH and Hirsch JG: Leukocyte locomotion and chemotaxis. New methods for evaluation and demonstration of a cell-derived chemotactic factor. J Exp Med 137:387–410, 1973.

    Article  PubMed  CAS  Google Scholar 

  28. Fischer HD, Gonzalez-Noriega A, and Sly WS: Beta-glucuronidase binding to human fìbroblast membrane receptors. J Biol Chem 255(11):5069–74, 1980.

    PubMed  CAS  Google Scholar 

  29. Minniti CP, Kohn EC, Grubb JH, Sly WS, Youngman O, Müller HL, Rosenfeld RG, and Helman U: The insulin-like growth factor II (IGF-II)/mannose 6-phosphate receptor mediates IGF-II-induced motility in human rhabdomyosarcoma cells. J Biol Chem 267(13):9000–4, 1992.

    PubMed  CAS  Google Scholar 

  30. Hawking F: Suramin: with special reference to onchocerciasis. Adv. Pharmacol Chemother 15:289–322, 1978.

    Article  PubMed  CAS  Google Scholar 

  31. Minniti CP, Maggi M, and Helman LJ: Suramin inhibits the growth of human rhabdomyosarcoma by interrupting the insulin-like growth factor II aitocrine growth loop. Cancer Res 52:1830–5, 1992.

    PubMed  CAS  Google Scholar 

  32. Hosang M: Suramin binds to platelet-derived growth factor and inhibits its biological activity. J Cell Biochem 29:265–73, 1985.

    Article  PubMed  CAS  Google Scholar 

  33. Sato Y and Rifkin DB: Autocrine activities of basic fibroblastic growth factor: regulation of endothelial cell movement, plasminigen activator synthesis, and DNA synthesis. J Cell Biol 107:1199–205,1988.

    Article  PubMed  CAS  Google Scholar 

  34. Betsholtz C, Johnsson A, Heldin C, and Westermark B: Efficient reversion of simian sarcoma virus-transformation and inhibition of growth factor-induced mitogenesis by suramin. Proc Natl Acad Sei USA 83:6440–4, 1986.

    Article  CAS  Google Scholar 

  35. Coffey RJ, Leof EB, Shipley G, and Moses HL: Suramin inhibition of growth factor receptor binding and mitogenity in AKR-2B cells. J Cell Physiol 132:143–8, 1987.

    Article  PubMed  CAS  Google Scholar 

  36. Pollack M and Richard M: Suramin blockade of insulin-like growth factor I-stimulated proliferation of human osteosarcoma cells. J Natl Cancer Inst 82:1349–52, 1990.

    Article  Google Scholar 

  37. Stein CA, La Rocca RV, Thomas R, McAtee N, and Myers CE: Suramin: an anticancer with a unique mechanism of action. J Clin Oncol 7:499–508, 1989.

    PubMed  CAS  Google Scholar 

  38. Collins JM, Klecker Jr. RW, Yarchoan R, Lane HC, Fauci AS, Redfiels RR, Broder S, and Myers CE: Clinical pharmacokinetics of suramin in patients with HTLV-III/LAV infection. J Clin Pharmacol 26:22–6, 1986.

    Article  PubMed  CAS  Google Scholar 

  39. DeLean A, Munson PJ, and Rodbard D: Simultaneous analysis of families of sigmoidal curves: applications to bioassay and physiological dose-response curves. Am J Physiol 235:E97–102,1978.

    PubMed  CAS  Google Scholar 

  40. Denziot F and Lang R: Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89:271–7, 1986.

    Article  Google Scholar 

  41. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–5, 1970.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Minniti, C.P., Helman, L.J. (1994). IGF-II in the Pathogenesis of Rhabdomyosarcoma: A Prototype of IGFs Involvement in Human Tumorigenesis. In: Le Roith, D., Raizada, M.K. (eds) Current Directions in Insulin-Like Growth Factor Research. Advances in Experimental Medicine and Biology, vol 343. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2988-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2988-0_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6301-9

  • Online ISBN: 978-1-4615-2988-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics