Skip to main content

Parental Imprinting of the Genes for IGF-II and Its Receptor

  • Chapter
Current Directions in Insulin-Like Growth Factor Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 343))

Abstract

One of the basic tenets of Mendelian genetics is that autosomal traits are equivalently transmitted from each of the two parents. In recent years the molecular corollary of this has also been demonstrated for the majority of the genes studied: Both copies of each autosomal gene are equivalently expressed at the mRNA level, regardless of the parent from which each was derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.A. Surani, S.C. Barton, and M.L. Norris, Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308:548 (1984).

    Article  PubMed  CAS  Google Scholar 

  2. J. McGrath and D. Solter, Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179 (1984).

    Article  PubMed  CAS  Google Scholar 

  3. J.R. Mann and R.H. Lovell-Badge, Inviability of parthenogenones is determined by pronuclei, not egg cytoplasm. Nature 310:66 (1984).

    Article  PubMed  CAS  Google Scholar 

  4. K.D. Bagshawe and S.D. Lawler, Unmasking moles. Br J Obstet Gynaecol 89:255 (1982).

    Article  PubMed  CAS  Google Scholar 

  5. A.G. Searle and C.V. Beechey, Genome imprinting phenomena on mouse chromosome 7. Genet 56:237 (1991).

    Google Scholar 

  6. A.G. Searle, J. Peters, M.F. Lyon, J.G. Hall, E.P. Evans, J.H. Edwards, and V.H. Buckle, Chromosome maps of man and mouse. IV Ann. Hum Genet 53:89 (1989).

    Article  CAS  Google Scholar 

  7. B.M. Cattanach and M. Kirk, Differential activity of maternally and paternally derived chromosome regions in mice. Nature 315:496 (1985).

    Article  PubMed  CAS  Google Scholar 

  8. M. Miller and J.G. Hall, Possible maternal effect on severity of neurofibromatosis. Lancet 2:1071 (1978).

    Article  PubMed  CAS  Google Scholar 

  9. A.E. Harding, Genetic aspects of autosomal dominant late onset cerebellar ataxia. J Med 18:436 (1981).

    CAS  Google Scholar 

  10. R.M. Ridley, CD. Frith, L.A. Farrer, and P.M. Conneally, Patterns of inheritance of the symptoms of Huntington’s disease suggestive of an effect of genomic imprinting. J Med Genet 28:22 (1991).

    Article  Google Scholar 

  11. M.C. Koch, T. Grimm, H.G. Harley, and P.S. Harper, Genetic risks for children of women with myotonic dystrophy. Am J Hum Genet 48:1084 (1991).

    PubMed  CAS  Google Scholar 

  12. I. Kennerknecht, A genetic model for the Prader-Willi syndrome and its implication for Angelman syndrome. Hum Genet 90:91 (1992).

    Article  PubMed  CAS  Google Scholar 

  13. R.D. Nicholls, J.H.M. Knoll, M.G. Butler, S. Karam, and M. Lalande, Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader-Willi syndrome. Nature 342:281 (1989).

    Article  PubMed  CAS  Google Scholar 

  14. S. Malcolm, J. Clayton-Smoth, M. Nochols, S. Robb, T. Webb, J.A.L. Armour A.J. Jeffreys, et al., Uniparental paternal disomy in Angelman’s sydrome. Lancet 337:694 (1991).

    Article  PubMed  CAS  Google Scholar 

  15. W.P. Robinson, A. Bottani, Y.G. Xie, J. Balakrishman, F. Binkert, M. Machler, A. Prader, and A. Schinzel, Molecular, cytogenetic, and clinical investigations of Prader-Willi syndrome patients. Am J Hum Genet 49:1219 (1991).

    PubMed  CAS  Google Scholar 

  16. T.M. DeChiara, A. Efstratiadis, and E.J. Robertson, A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345:78 (1990).

    Article  PubMed  CAS  Google Scholar 

  17. T.M. Dechiara, E.J. Robertson, and A. Efstratiadis, Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64:849 (1991).

    Article  PubMed  CAS  Google Scholar 

  18. N. Giannoukakis, C. Deal, C.G. Goodyer, J. Paquette, and C. Polychronakos, Parental genomic imprinting of the human IGF2 gene. Nature Genetics 4:98 (1993).

    Article  PubMed  CAS  Google Scholar 

  19. S. Rainier, L.A. Johnson, C.J. Dobry, A.J. Ping, P.E. Grundy, and A.P. Feinberg, Relaxation of imprinted genes in human cancer. Nature 362:747 (1993).

    Article  PubMed  CAS  Google Scholar 

  20. O. Ogawa, M.R. Eccles, J. Szeto, L.A. McNoe, K. Yun, M.A. Maw, P.J. Smith, and A.E. Reeve, Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms’ tumour. Nature 362:749–751 (1993).

    Article  PubMed  CAS  Google Scholar 

  21. R. Ohlsson, A. Nyström, S. Pfeifer-Ohlsson, V. Töhönen, F. Hedborg, P. Schofield, Flam, F., and T.J. Edström, IGF2 is parentally imprinted during human embryogenesis and in the Becwith-Wiedemann syndrome. Nature Genetics 4:94 (1993).

    Article  PubMed  CAS  Google Scholar 

  22. P. Nissley and W. Lopaczynski, Insulin-like growth factor receptors. Growth Factors 5:29–43 (1991).

    Article  PubMed  CAS  Google Scholar 

  23. C. Polychronakos, The mannose 6-phosphate/IGF-II receptor, in: Molecular and Cellular Biology of the IGFs M. Raizada and D. LeRoith, eds, Plenum Press, New York, (1989).

    Google Scholar 

  24. M.M. Sklar, W. Kiess, C.L. Thomas, and S.P. Nissley, Developmental expression of the tissue insulin-like growth factor II/mannose 6-phosphate receptor in the rat. Measurement by quantitative immunoblotting. J Biol Chem 264:16733 (1989).

    PubMed  CAS  Google Scholar 

  25. D.P. Barlow, R. Stöger, B.G. Herrmann, K. Saito, and N. Schweifer, The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349:84 (1991).

    Article  PubMed  CAS  Google Scholar 

  26. J. Goto, D.A. Figlewicz, C. Marineau, N. Khodr, and G.A. Rouleau, Dinucleotide repeat polymorphism at the GF2R locus. Nucleic Acids Res 20:923 (1992).

    Article  PubMed  CAS  Google Scholar 

  27. D. Haig and C. Graham, Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell 64:1045 (1991).

    Article  PubMed  CAS  Google Scholar 

  28. S.O. Adams, S.P. Nissley, S. Handwerger, and M. Rechler, Developmental patterns of of IGF-I and II synthesis and regulation in rat fíbroblasts Nature 302:150–153 (1993).

    Article  Google Scholar 

  29. P.K. Lund, B.M. Moats-Staats, M.A. Hynes, J.G. Simmons, M. Jansen, A.J. D’Ercole, and J.J. Van Wyk, Somatomedin C/IGF-I and IGF-II mRNAs in rat fetal and adult tissues. J Biol Chem 261:14539 (1986).

    PubMed  CAS  Google Scholar 

  30. V.K.M. Han, A.J. D’Ercole, P.K. Lund, Cellular localization of somatomedin (IGF) mRNA in the human fetus. Science 236:193 (1987).

    Article  PubMed  CAS  Google Scholar 

  31. A. Gray, A.W. Tarn, T.J. Dull, J. Hayflick, J. Pintar, W.K. Cavenee, A. Koufos, A. Ullrich, Tissue-specific and developmentally regulated transcription of IGF-II. DNA 6:283 (1987).

    Article  PubMed  CAS  Google Scholar 

  32. B. Funk, U. Kessler, W. Eisenmenger, A. Hansmann, H.J. Kolb, and W. Kiess, Expression of the M6P/IGF-II receptor in multiple human tissues during fetal life and early infancy. J Clin Endocrinol Metab 75:431 (1992).

    Article  Google Scholar 

  33. Y. Xu and C. Polychronakos, A soluble form of the M6P/IGF-II receptor in human amniotic fluid. 74th Annual Meeting, Endocrine Society, San Antonio. Abstract #1443, (1992).

    Google Scholar 

  34. M.S. Bartolomei, S. Zemel, and S.M. Tilghman, Parental imprinting of the mouse H19 gene. Nature 351:153 (1991).

    Article  PubMed  CAS  Google Scholar 

  35. Y. Zhang and B. ycko, Monoallelic expression of the human H19 gene. Nature Genetics 1:40 (1992).

    Article  PubMed  CAS  Google Scholar 

  36. J. Rachmilewitz, R. Goshen H. Ariel, T. Schneider, N. de Groot, and A. Hochberg, Parental imprinting of the human H19 gene. FEBS 309:25 (1992).

    Article  CAS  Google Scholar 

  37. S. Zemel, M.S. Bartolomei, and S.M. Tilghman, Physical linkage of two mammalian imprinted genes, H19 and igf2. Nature Genetics 2:61–65 (1992).

    Article  PubMed  CAS  Google Scholar 

  38. D. Fischer, D. Weisenberger, and U. Scheer, Assigning functions to nucleolar structures. Chromosoma 101:133 (1991).

    Article  PubMed  CAS  Google Scholar 

  39. S.E. Leef, C.I. Brannan, M.I. Reed, T. Ozcelik, U. Francke, N.G. Copeland, and N.A. Jenkins, Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader-Willi syndrome region. Nature Genetics 2:259 (1992).

    Article  Google Scholar 

  40. T. Ozcelik, S. Leff, W. Robinson, T. Donlon, M. Lalande, E. Sanjines, A. Schinzel, and U. Francke, Small nuclear ribonucleoprotein polypeptide N (SNRPN), an expressed gene in the Prader-Willi syndrome critical region. Nature Genetics 2:265 (1992).

    Article  PubMed  CAS  Google Scholar 

  41. M. Hergersberg, Biological aspects of cytosine methylation in eukaryotic cells. Experientia 47:1171 (1991).

    Article  PubMed  CAS  Google Scholar 

  42. E. Li, T.H. Bestor, and R. Jaenisch, Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:9151 (1992).

    Google Scholar 

  43. I. Keshet, J. Lieman-Hurwitz, and H. Cedar, DNA methylation affects the formation of active chromatin. Cell 4:535 (1986).

    Article  Google Scholar 

  44. D.J. Ball, D.S. Gross, and W.T. Garrard, 5-methylcytosine is localized in nucleosomes that contain histone H1. Proc Natl Acad Sci USA 80:5490 (1983).

    Article  PubMed  CAS  Google Scholar 

  45. J. Tazi and A. Bird, Alternative chromatin structure at CpG islands. Cell 60:909 (1990).

    Article  PubMed  CAS  Google Scholar 

  46. M. Szyf, DNA methylation patterns: an additional level of information. Biochem Cell 69:764 (1991).

    Article  CAS  Google Scholar 

  47. R. Hermann and W. Doerfler, Interference with protein binding at AP2 sites by sequence-specific methylation in the late E2A promoter of adenovirus type 2 DNA. FEBS Lett 29:238 (1991).

    Article  Google Scholar 

  48. M. Comb and H.M. Goodman, CpG mehtylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Res 18:3975 (1990).

    Article  PubMed  CAS  Google Scholar 

  49. M.A. Harrington, P.A. Jones, M. Imagawa, and M. Karin, Cytosine methylation does not affect binding of transcription factor Spl. Proc Natl Acad Sci USA 85:2066 (1988).

    Article  PubMed  CAS  Google Scholar 

  50. J.D. Lewis, R.R. Meehan, W.J. Henzel, I. Maurer-Fogy, P. Jeppesen, F. Klein, and A. Bird, Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69:905 (1992).

    Article  PubMed  CAS  Google Scholar 

  51. J. Boyes and A. Bird, DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 64:1123 (1991).

    Article  PubMed  CAS  Google Scholar 

  52. C. Sapienza, T.H. Tran, J. Paquette, R. McGowan, and A. Peterson, Degree of methylation of transgenes is dependent on gamete of origin. Nature 328:251 (1987).

    Article  PubMed  CAS  Google Scholar 

  53. J.L. Swain, T.A. Stewart, and P. Leder, Parental legacy determines methylation and expression of an autosomal transgene: a molecular mechanism for parental imprinting. Cell 50:719 (1987).

    Article  PubMed  CAS  Google Scholar 

  54. C. Pourcel, Maternal inhibition of hepatitis B surface antigen gene expression in transgenic mice correlates with de novo methylation. Nature 329:454 (1987).

    Article  PubMed  Google Scholar 

  55. W. Reik, A. Collick, M.L. Norris. S.C. Barton, and M.A.H. Surani, Genomic imprinting determines methylation of parental alleles in trnasgenic mice. Nature 328:248 (1987).

    Article  PubMed  CAS  Google Scholar 

  56. A.B. Kolsto, G. Kollias, V. Giguere, K.I. Isobe, H. Prydz, and F. Grosveld, The maintenance of methylation-free islands in transgenic mice. Nucleic Acids Res 14:9667 (1987).

    Google Scholar 

  57. S.G. Grant and V.M. Chapman, Mechanism of X-chromosome regulation. A Rev Genet 22:199 (1988).

    Article  CAS  Google Scholar 

  58. P. Rotwein and L.J. Hall, Evolution of insulin-like growth factor II: Characterization of the mouse IGF-II gene and identification of two pseudo-exons. DNA Cell Biol 9:725 (1990).

    Article  PubMed  CAS  Google Scholar 

  59. R. Stöger, P. Kubicka, C.G. Liu, T. Kafri, A. Razin, H. Cedar, and D.P. Barlow, Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73:61 (1993).

    Article  PubMed  Google Scholar 

  60. H. Sasaki, P.A. Jones, J.R. Chaillet, A.C. Ferguson-Smith, S.C. Barton, W. Reik, and M.A. Surani, Parental imprinting: potentially active chromatin of the repressed maternal allele of the mouse insulin-like growth factor II (Igf2) gene. Genes &Development 6:1843 (1992).

    Article  CAS  Google Scholar 

  61. A.G. Searle and C.V. Beechey, Genome imprinting phenomena on mouse chromosome 7. Genet Res 56:237 (1990).

    Article  PubMed  CAS  Google Scholar 

  62. O. Hanscombe, D. Whyatt, P. Fraser, N. Yannoutsos, D. Greaves, N. Dillon, and F. Grosvelt, Importance of globin gene order for correct gene expression. Genes Dev. 5:1387 (1991).

    Article  PubMed  CAS  Google Scholar 

  63. J.G. Hall, Genomic imprinting: review and relevance to human diseases. American J of Human Genetics 46:857–873 (1990).

    CAS  Google Scholar 

  64. W. Reik, Genomic imprinting and genetic disorders in man. Trends Genet 5:331 (1989).

    Article  PubMed  CAS  Google Scholar 

  65. H.R. Wiedemann, Complexe malformatif familial avec hernie ombilicale et macroglossie -un “syndrome nouveau”. J Genet Hum 13:223 (1964).

    PubMed  CAS  Google Scholar 

  66. J.B. Beckwith, Macroglossia, omphalocele, adrenal cytomegaly, gigantism, and hyperplastic visceromegaly. Birth Defects 5:188 (1969).

    Google Scholar 

  67. C.L. Clericuzio, Clinical phenotypes and Wilms tumor. Med Pediatr Oncol 21:182 (1993).

    Article  PubMed  CAS  Google Scholar 

  68. A. Koufos, P. Grundy, K. Morgan, K. et al., Familial Wiedemann-Beckwith syndrome and a second Wilms’ tumor locus both map to 11p15.5. Am J Hum Genet 44:711 (1989).

    PubMed  CAS  Google Scholar 

  69. A.C. Ferguson-Smith, B.M. Cattanach, S.C. Barton, C.V. Beechey, and M.A. Surani, Embryologie and molecular investigations of parental imprinting on mouse chromosome 7. Nature 351:667 (1991).

    Article  PubMed  CAS  Google Scholar 

  70. A.E. Reeve, M.R. Eccles, R.J. Wilkins, G.I. Bell, and L.J. Millow, Expression of insulin-like growth factor-II transcripts in Wilms tumour. Nature 317:258 (1985).

    Article  PubMed  CAS  Google Scholar 

  71. J. Scott, J. Cowell, M.E. Robertson, L.M. Priestley, R. Wadey, B. Hopkins, J. Pritchard, G.I. Bell, L.B. Rail, C.F. Graham, et al., Insulin-like growth factor II gene expression in Wilms’ tumor and embryonic tissues. Nature 317 (1985).

    Google Scholar 

  72. K.M. Call, T. Glaser, C.L. Ito, et al., Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60:509 (1990).

    Article  PubMed  CAS  Google Scholar 

  73. M. Gessler, A. Poustka, W. Cavanee, et al., Homozygous deletions in Wilms’ tumour of a zinc-finger gene identified by chromosome jumping. Nature 343:774 (1990).

    Article  PubMed  CAS  Google Scholar 

  74. F.J. Rauscher III, J.F. Morris, O.E. Tournay, et al., Binding of the Wilms’ tumor locus zinc finger protein to the EGR-1 consensus sequence. Science 250:1259 (1991).

    Article  Google Scholar 

  75. I.A. Drummond, S.L. Madden, P. Rohwer-Nutter, G.I. Bell V.P. Sukhatme, F.J. Rauscher III, Repression of the IGF-II gene by the Wilms tumor suppressor WT1 Science 257:674 (1992).

    Article  PubMed  CAS  Google Scholar 

  76. M. Mannens, R.M. Slater, C. Heyting, J. Bliek, J. de Kraker, N. Coad, P. de Pagter Holthuizen, and P.L. Pearson, Molecular nature of genetic changes resulting in loss of heterozygosity of chromosome 11 in Wilms’ tumours. Human Genetics 81:41 (1989).

    Article  Google Scholar 

  77. S.H. Orkin, D.S. Goldman, and S.E. Sallan, Development of homozygosity for chromosome lip markers in Wilms’ tumour. Nature 309:172 (1984).

    Article  PubMed  CAS  Google Scholar 

  78. A.E. Reeve, P.J. Housiaux, R.J.M. Gardner, W.E. Chewings, R.M. Grindley, and L.J. Millow, Loss of a Harvey ras allele in sporadic Wilms’ tumour. Nature 309:174 (1984).

    Article  PubMed  CAS  Google Scholar 

  79. E.R. Fearon, B. Vogelstein, and P. Feinberg, Somatic deletion and duplication of genes on chromosome 11 in Wilms’ tumours. Nature 309:176 (1984).

    Article  PubMed  CAS  Google Scholar 

  80. A.M. Raizis, D.M. Becroft, R.L. Shaw, A.E. Reeve, A mitotic recombination in Wilms tumor occurs between the parathyroid hormone locus and llpl3. Human Genetics 70:344 (1985).

    Article  PubMed  CAS  Google Scholar 

  81. R.M. Slater and M. Mannens, Cytogenetics and molecular genetics of Wilms’ tumor of childhood. Cancer Genet Cytogenet 61:111 (1992).

    Article  PubMed  CAS  Google Scholar 

  82. B. Ponder, Gene losses in human tumours. Nature 335:400 (1988).

    Article  PubMed  CAS  Google Scholar 

  83. W.T. Schroeder, L.Y. Chao, D.D. Dao, L.C. Strong, S. Pathak, V. Riccardi, V.H. Lewis, and G.F. Saunders, Nonrandom loss of maternal chromosome 11 alleles in Wilms tumors. Am J Hum Genet 40:413 (1987).

    PubMed  CAS  Google Scholar 

  84. S.F. Dowdy, C.L. Fasching, D. Araujo, et al., Suppression of tumorigenicity in Wilms tumor by the pl5.5-pl4 region of chromosome 11. Science 254:293 (1991).

    Article  PubMed  CAS  Google Scholar 

  85. M. Koi, L.A. Johnson, L.M. Kalikin, P.F.R. Little, Y. Nakamura, and A.P. Feinberg, Tumor cell growth arrest caused by subchromosomal transferable DNA fragments from chromosome 11. Science 260:361 (1993).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Polychronakos, C. (1994). Parental Imprinting of the Genes for IGF-II and Its Receptor. In: Le Roith, D., Raizada, M.K. (eds) Current Directions in Insulin-Like Growth Factor Research. Advances in Experimental Medicine and Biology, vol 343. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2988-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2988-0_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6301-9

  • Online ISBN: 978-1-4615-2988-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics