Skip to main content

Immunological Studies of Type I IGF Receptors and Insulin Receptors: Characterisation of Hybrid and Atypical Receptor Subtypes

  • Chapter
Current Directions in Insulin-Like Growth Factor Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 343))

Abstract

The insulin receptor (IR) and type I IGF receptor (IGFR) are widely distributed in mammalian tissues, though varying in concentration between different cell types. The receptors show considerable similarity in primary sequence within a common disulphide linked (αβ)2 subunit structure. The insulin receptor-related receptor (IRR), a third member of this receptor family for which a ligand has yet to be identified, apparently has a much more restricted tissue distribution (Shier and Watt, 1992). The IR and IGFR mediate overlapping biological responses for which the intrinsic tyrosine-specific kinase activity of the receptors appears to be essential. These tyrosine kinases are highly homologous and differences in signalling capacities of the IR and IGFR in a given cell background have not been clearly defined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandrides, T.K., and Smith, R.J., 1989, A novel fetal insulin-like growth factor (IGF) I receptor: mechanism for increased IGF I-and insulin-stimulated tyrosine kinase activity in fetal muscle, J. Biol. Chem. ,264:12922–12930.

    PubMed  CAS  Google Scholar 

  • Bajaj, M., Waterfield, M.D., Schlessinger, J., Taylor, W.R., and Blundell, T., 1987, On the tertiary structure of the extracellular domains of the epidermal growth factor and insulin receptors, Biochim BiophysActa 916:220–226.

    Article  CAS  Google Scholar 

  • Boni-Schnetzler, M., Scott, W., Waugh, S.E., DiBella, E., and Pilch, P.F., 1987, The insulin receptor: structural basis for high affinity ligand binding, J. Biol. Chem. 262:8395–8401.

    PubMed  CAS  Google Scholar 

  • Burant, C.F., Treutelaar, M.K., Allen, K.D., Sens, D.A., and Buse, M.G., 1987, Comparison of insulin and insulin-like growth factor I receptors from rat skeletal muscle and L-6 myocytes, Biochem. Biophys. Res. Comm. 147:100–107.

    Article  PubMed  CAS  Google Scholar 

  • Flores-Riveros, J.R., Sibley, E., Kastelic, T., and Lane, M.D., 1989, Substrate phosphorylation catalyzed by the insulin receptor tyrosine kinase; kinetic correlation to autophosphorylation of specific sites in the ß subunit, J. Biol. Chem. ,264:21557–21572.

    PubMed  CAS  Google Scholar 

  • Frattali, A.L., Treadway, J.L., and Pessin, J.E., 1992, Transmembrane signaling by the human insulin receptor kinase: relationship between intramolecular ß-subunit trans- and cis-autophosphorylation and substrate kinase activation, J. Biol. Chem. 267:19521–19528.

    PubMed  CAS  Google Scholar 

  • Fujita-Yamaguchi, Y., and Harmon, J.T., 1988, A monomer-dimer model explains the results of radiation activation: binding characteristics of insulin receptor purified from human placenta, Biochemistry 27:3252–3260.

    Article  PubMed  CAS  Google Scholar 

  • Ganderton, R.H., Stanley, K.K., Field, C.E., Coghlan, M.P., Soos, M.A., and Siddle, K., 1992, A monoclonal anti-peptide antibody reacting with the insulin receptor ß-subunit: characterization of the antibody and its epitope and use in immunoaffinity purification of intact receptors, Biochem. J. 288:195–205.

    PubMed  CAS  Google Scholar 

  • Garofalo, R.S., and Rosen, O.M., 1989, Insulin and insulinlike growth factor 1 (IGF-1) receptors during central nervous system development: expression of two immunologically distinct IGF-1 receptor ß subunits, Mol. Cell. Biol. ,9:2806–2817.

    PubMed  CAS  Google Scholar 

  • Garofalo, R.S., and Barenton, B., 1992, Functional and immunological distinction between insulin-like growth factor I receptor subtypes in KB cells, J. Biol. Chem. ,267:11470–11475.

    PubMed  CAS  Google Scholar 

  • Geffner, M.E., and Golde, D.W., 1988, Selective insulin action on skin, ovary and heart in insulin-resistant states, Diabetes Care 11:500–505.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, B.J., and Dudley, A.L., 1990, The rat insulin receptor: primary structure and conservation of tissue-specific alternative messenger RNA splicing, Molec. Endocrinol. ,4:235–244.

    Article  CAS  Google Scholar 

  • Gustafson, T.A., and Rutter, W.J., 1990, The cysteine-rich domains of the insulin and insulin-like growth factor I receptors are primary determinants of hormone binding specificity: evidence from receptor chimeras, J. Biol. Chem. 265:18663–18667.

    PubMed  CAS  Google Scholar 

  • Hainaut, P., Kowalski, A., Giorgetti, S., Baron, V., and Van Obberghen, E., 1991, Insulin and insulin-like-growth-factor-I (IGF-I) receptors in Xenopus laevis oocytes: comparison with insulin receptors from liver and muscle, Bichem. J. 273:673–678.

    CAS  Google Scholar 

  • Heidaran, M.A., Pierce, J.H., Yu, J.C., Lombardi, D., Artrip, J.E., Fleming, T.P.,Thomason, A., and Aaronson, S.A., 1991, Role of aß receptor heterodimer formation of ß platelet-derived growth factor receptor activation by PDGF-AB, J. Biol .Chem. 266:20232–20237.

    PubMed  CAS  Google Scholar 

  • Heidenreich, K.A., Zahiser, N.R., Berhanu, P., Brandenburg, D., and Olefsky, J.M., 1983, Structural differences between insulin receptors in the brain and peripheral target tissues, J. Biol. Chem. 258:8527–8530.

    PubMed  CAS  Google Scholar 

  • Jonas, H.A., and Cox, A.J., 1990, Insulin-like growth factor binding to the atypical insulin receptors of a human lymphoid-derived cell line (IM-9), Biochem. J. 266:737–742.

    PubMed  CAS  Google Scholar 

  • Jonas, H.A., Newman, J.D., and Harrison, L.C., 1986, An atypical insulin receptor with high affinity for insulin-like growth factors copurified with placental insulin receptors, Proc. Natl. Acad. Sci. U.SA. 83:4124–4128.

    Article  CAS  Google Scholar 

  • Jonas, H.A., Cox, A.J., and Harrison, L.C., 1989, Delineation of atypical insulin receptors from classical insulin and Type I insulin-like growth factor receptors in human placenta, Biochem. J. 257:101–107.

    PubMed  CAS  Google Scholar 

  • Jonas, H.A., Eckardt, G.S., and Clark, S. 1990, Expression of atypical and classical insulin receptors in Chinese hamster ovary cells transfected with cloned cDNA for the human insulin receptor, Endocrinology 127:1301–1309.

    Article  PubMed  CAS  Google Scholar 

  • Kadowaki, H., Kadowaki, T., Camra, A., Marcus-Samuels, B., Rovira, A., Bevins, C.L., and Taylor, S., 1990, Mutagenesis of lysine 460 in the human insulin receptor: effects upon receptor recycling and cooperative interactions among binding sites, J. Biol. Chem. 265:21285–21296.

    PubMed  CAS  Google Scholar 

  • Kjeldsen, T., Andersen, A.S., Wiberg, F., Rasmussen, J.S., Schafer, L., Balschmidt, P., Moller, K.B., and Moller, N.P., 1991, The ligand specificities of the insulin receptor and the insulin-like growth factor-1 receptor reside in different regions of a common binding site, Proc. Natl. Acad. Sci. U.S.A. 88:4404– 4408.

    Article  PubMed  CAS  Google Scholar 

  • Koch, R., Deger, A., Jack, J.M., Klotz, K.N., Schenzle, D., Kramer, H., Kelm, S., Muller, G., Rapp, R., and Weber, U., 1986, Characterization of solubilized insulin receptors from rat liver microsomes: existence of two receptor species with different binding properties, E. J. Biochem. 154:281–287.

    Article  CAS  Google Scholar 

  • Kull, F.C., Jacobs, S., Su, Y.-F., Svoboda, M.E., van Wyk, J.J., and Cuatrecasas, P., 1983, Monoclonal antibodies to receptors for insulin and somatomedin-C, J. Biol. Chem. 258:6561–6566.

    PubMed  CAS  Google Scholar 

  • Leconte, I., Auzan, C., Debant, A., Rossi, B., and Clauser, E., 1992, AMinked oligosaccharide chains of the insulin receptor ß subunit are essential for transmembrane signalling, J. Biol. Chem. ,267:17415– 17423.

    PubMed  CAS  Google Scholar 

  • Lee, J., O’Hare, T., Pilch, P.F., and Shoelson, S.E.,1993, Insulin receptor autophosphorylation occurs asymmtrically, J. Biol. Chem. 268:4092–4098.

    PubMed  CAS  Google Scholar 

  • McElduff, A., Grunberger, G., and Gorden, P., 1985, An alteration in apparent molecular weight of the insulin receptor from the human monocyte cell line U-937, Diabetes 34:686–690.

    Article  PubMed  CAS  Google Scholar 

  • Milazzo, G., Yip, C.C., Maddux, B., Vigneri, R., and Goldfine, I.D., 1992, High-affinity insulin binding to an atypical insulin-like growth factor-I receptor in human breast cancer cells, J. Clin. Invest. 89:899– 908.

    Article  PubMed  CAS  Google Scholar 

  • Misra, P., Hintz, R.L., and Rosenfeld, R., 1986, Structure and immunological characterization of insulin-like growth factor II binding to IM-9 cells, J. Clin. Endocrinol. Metab. 63:1400–1405.

    Article  PubMed  CAS  Google Scholar 

  • Mosthaf, L., Grako, K., Dull, T.J., Coussens, L., Ullrich, A., and McClain D.A., 1990, Functionally distinct insulin receptors generated by tissue-specific alternative splicing, EMBO J., 9:2409–2413.

    PubMed  CAS  Google Scholar 

  • Morrison, B.D., Swanson, M.L., Sweet, L.J., and Pessin, J., 1988, Insulin-dependent covalent reassociation of isolated αß hetcrodimeric insulin receptors into an α2ß2 heterotetrameric disulfide-linked complex, J. Biol. Chem. 263:7806–7813.

    PubMed  CAS  Google Scholar 

  • Moxham, C.P., Duronio, V., and Jacobs, S., 1989, Insulin-like growth factor I receptor ß-subunit heterogeneity: evidence for hybrid tetramers composed of insulin-like growth factor I and insulin receptor heterodimers, J. Biol. Chem. 264:13238–13244.

    PubMed  CAS  Google Scholar 

  • Olson, T.S., Bamberger, M.J., and Lane, M.D., 1988, Post-translational changes in tertiary and quaternary structure of the insulin pro-receptor: correlation with acquisition of function, J. Biol. Chem. 263:7342– 7352.

    PubMed  CAS  Google Scholar 

  • Ota, A., Wilson, G.L., and LeRoith, D., 1988, Insulin-like growth factor I receptors on mouse neuroblastoma cells: two ß subunits are derived from differences in glycosylation, Eur. J. Biochem. 174:521– 530.

    Article  PubMed  CAS  Google Scholar 

  • Poretsky, L., 1991, On the paradox of insulin-induced hyperandrogenism in insulin-resistant states, Endocr. Rev. 12:3–13.

    Article  PubMed  CAS  Google Scholar 

  • Prigent, S.A., Stanley, K.K., and Siddle, K., 1990, Identification of epitopes on the human insulin receptor reacting with rabbit polyclonal antisera and mouse monoclonal antibodies., J. Biol. Chem. 265:9970– 9977.

    PubMed  CAS  Google Scholar 

  • Qian, X., Decker, S.J., and Greene, M.I., 1992, p185c-neuand epidermal growth factor receptor associate into a structure composed of activated kinases, Proc. Natl. Acad. Sci. USA. 89:1330–1334.

    Article  CAS  Google Scholar 

  • Schaffer, L., and Ljungqvist, L., 1992, Identification of a disulfide bridge connecting the α-subunits of the extracellular domain of the insulin receptor, Biophys. Res. Comm. 189:650–653.

    Article  CAS  Google Scholar 

  • Schaefer, E.M., Siddle, K., and Ellis, L., 1990, Deletion analysis of the human insulin receptor ectodomain reveals independently folded soluble subdomains and insulin binding by a monomeric a-subunit, J. Biol. Chem. 265:13248–13253.

    PubMed  CAS  Google Scholar 

  • Schaefer, E.M., Ericjon, H.P., Federwisch, M., Wollmer, A., and Ellis, E., 1992, Structural organisation of the human insulin receptor ectodomain, J. Biol. Chem. 267:23393–23402.

    PubMed  CAS  Google Scholar 

  • Schumacher, R., Mosthaf, L., Schlessinger, J., Brandenburg, D., and Ullrich, A., 1991, Insulin and insulinlike growth factor-1 binding specificity is determined by distinct regions of their cognate receptors, J.Biol. Chem. 266:19288–19295.

    PubMed  CAS  Google Scholar 

  • Schumacher, R., Soos, M.A., Schlessinger, J., Brandenburg, D., Siddle, K., and Ullrich, A., 1993, Signaling-competent receptor chimeras allow mapping of major insulin receptor binding domain determinants, J. Biol. Chem. 268:1087–1094.

    PubMed  CAS  Google Scholar 

  • Shier, P., and Watt, V.M., 1992, Tissue-specific expression of the rat insulin receptor-related receptor gene, Molec. Endocrinol. 6:723–729.

    Article  CAS  Google Scholar 

  • Shimizu, M., Webster, C., Morgan, D.O., Blau, H., and Roth, R.A., 1986, Insulin and insulin-like growth factor receptors and responses in cultured human muscle cells, Am. J. Physiol. 251:E611–E615.

    PubMed  CAS  Google Scholar 

  • Soos M.A., and Siddle K., 1989 Immunological relationships between receptors for insulin and insulin-like growth factor-I: evidence for structural heterogeneity of insulin-like growth factor-I receptors involving hybrids with insulin receptors, Biochem.J 263:553–563.

    PubMed  CAS  Google Scholar 

  • Soos, M.A., Siddle, K., Baron, M.D., Heward, J.M., Luzio, J.P., Bellatin, J., and Lennox, E.S., 1986, Monoclonal antibodies reacting with multiple epitopes on the human insulin receptor, Biochem. J. 235:199–208.

    PubMed  CAS  Google Scholar 

  • Soos M.A., Whittaker J., Lammers R., Ullrich A., and Siddle K., 1990, Receptors for insulin and insulinlike growth factor-I can form hybrid dimers: characterization of hybrid receptors in transfected cells, Biochem. J. 270:383–390.

    PubMed  CAS  Google Scholar 

  • Soos, M.A., Field, C.E., Lammers, R., Ullrich, A., Zhang, B., Roth, R.A., Andersen, A., Kjeldsen, T., and Siddle, K., 1992, A panel of monoclonal antibodies for the type I insulin-like growth factor receptor: epitope mapping, effects on ligand binding and biological activity, J. Biol. Chem. 267:12955–12963.

    PubMed  CAS  Google Scholar 

  • Soos, M.A., Field, C.E., and Siddle, K., 1993, Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity, Biochem. J. 290:419–426.

    PubMed  CAS  Google Scholar 

  • Steele-Perkins, G., and Roth, R.A., 1990, Monoclonal antibody αIR-3 inhibits the ability of insulin-like growth factor II to stimulate a signal from the type I receptor without inhibiting its binding, Biochem. Biophys. Res. Comm. 171:1244–1251.

    Article  PubMed  CAS  Google Scholar 

  • Tollefsen, S.E., and Thompson, K., 1988, The structural basis for insulin-like growth factor I receptor high affinity binding, J Biol Chem 263:16267–16273.

    PubMed  CAS  Google Scholar 

  • Treadway J.L., Morrison B.D., Goldfine I.D., and Pessin J.E., 1989, Assembly of insulin/insulin-like growth factor-1 hybrid receptors in vitro, J. Biol. Chem. 264:21450–21453.

    PubMed  CAS  Google Scholar 

  • Waldbillig, R.J., and Chader, G.J., 1988. Anomalous insulin-binding activity in the bovine neural retina: a possible mechanism for the regulation of receptor binding specificity, Biochem. Biophys. Res. Comm. 151:1105–1112.

    Article  PubMed  CAS  Google Scholar 

  • Weiland, M., Bahr, F., Hohne, M., Schurmann, A., Ziehm, D., and Joost, H.G., 1991, the signalling potential of the receptors for insulin and insulin-like growth factors 1 in 3T3-L1 adipocytes, J. Cell Physiol. 149:428–435.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, Y., Flier, J.S., Yokota, A., Benecke, H., Backer, J.M., and Moller, D.E., 1991, Functional properties of two naturally occurring isoforms of the human insulin receptor in Chinese hamster ovary cells, Endocrinology 129:2058–2066.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, Y., Flier, J.S., Benecke, H., Ransil, B.J., and Moller, D.E., 1993, Ligand binding properties of the two isoforms of the human insulin receptor, Endocrinology 132:1132–1138.

    Article  PubMed  CAS  Google Scholar 

  • Yee, D., Lebovic, G.S., Marcus, R.R., and Rosen, N., 1989, Identification of an alternate type I insulin-like growth factor receptor ß subunit mRNA transcript, J. Biol. Chem. 264:21439–21441.

    PubMed  CAS  Google Scholar 

  • Zhang, B., and Roth, R. A., 1991a, Binding properties of chimeric insulin receptors containing the cysteine-rich domain of either the insulin-like growth factor receptor or the insulin receptor related receptor, Biochemistry 30:5113–5117.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, B.,and Roth, R. A., 1991b, A region of the insulin receptor important for ligand binding (residues 450–601) is recognized by patient’s autoimmune antibodies and inhibitory monoclonal antibodies, Proc. Natl. Acad. Sci. USA. 88:9858–9862.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Soos, M.A., Navé, B.T., Siddle, K. (1994). Immunological Studies of Type I IGF Receptors and Insulin Receptors: Characterisation of Hybrid and Atypical Receptor Subtypes. In: Le Roith, D., Raizada, M.K. (eds) Current Directions in Insulin-Like Growth Factor Research. Advances in Experimental Medicine and Biology, vol 343. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2988-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2988-0_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6301-9

  • Online ISBN: 978-1-4615-2988-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics