Advertisement

IRR: A Novel Member of the Insulin Receptor Family

  • Valerie M. Watt
  • Peter Shier
  • Joanne Chan
  • Bradley A. Petrisor
  • Swarna K. Mathi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 343)

Abstract

Insulin’s effects, including its pivotal regulation of blood glucose levels, are mediated by a cell-surface receptor (reviewed in Olefsky, 1990; Ullrich and Schlessinger, 1990). The structure of the insulin receptor, defined using recombinant DNA techniques, exhibits a high degree of overall similarity with the receptor for the structurally related insulin-like growth factor (IGF), IGF-I (for review, see Czech, 1989). These heterotetrameric glycoproteins consists of extracellular a-subunits containing the insulin-binding region disulfide-bonded to β-subunits which span the membrane and contain a cytoplasmic tyrosine kinase activated by insulin binding (Ebina et al., 1985; Ullrich et al., 1985; Ullrich et al., 1986). The α-and β-subunits are derived by proteolytic cleavage of the proreceptor.

Keywords

Insulin Receptor Chimeric Receptor Insulin Receptor Gene Initiator Methionine Human Insulin Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbot, A.M., Bueno, R., Pedrini, M.T., Murray, J.M., and Smith R.J., 1992, Insulin-like growth factor I receptor gene structure, J. Biol. Chem. 267:10759.Google Scholar
  2. Adachi, T., Takiya, S., Suzuki, Y., Iwami, M., Kawakami, A., Takahashi, S.Y., Ishizaki, H., Nagasawa, H., and Suzuki, A., 1989, cDNA structure and expression of bombyxin, an insulin-like brain secretory peptide of the silkmoth bombyx mori, J. Biol. Chem. 264:7681.PubMedGoogle Scholar
  3. Araki, E., Shimada, F., Uzawa, H., Mori, M., and Ebina, Y., 1987, Characterization of the promoter region of the human insulin receptor gene, J. Biol. Chem. 262:16186.PubMedGoogle Scholar
  4. Carlsson-Skwirut, C., Lake, M., Hartmanis, M., Hall, K., and Sara, V.R., 1989, A comparison of the biological activity of the recombinant intact and truncated insulin-like growth factor 1 (IGF-1), Biochim. Biophys. Acta. 1011:192.PubMedCrossRefGoogle Scholar
  5. Chan, S.J., Episkopou, V., Zeitlin, S., Karathanasis, S.K., MacKrell, A., Steiner, D.F., and Efstratiadis, A., 1984, Guinea pig preproinsulin gene: an evolutionary compromise?, Proc. Natl. Acad. Sci. USA. 81: 5046.PubMedCrossRefGoogle Scholar
  6. Czech, M.P., 1989, Signal transmission by the insulin-like growth factors, Cell. 59:235.PubMedCrossRefGoogle Scholar
  7. Ebina, Y., Ellis, L., Jarnagin, K., Edery, M., Graf, L., Clauser, E., Ou, J., Masiarz, F., Kan, Y.W., Goldfine, I.D., Roth, R.A., and Rutter, W.J., 1985, The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling, Cell. 40:747.PubMedCrossRefGoogle Scholar
  8. Graur, D., Hide, W.A., and Li, W.-H., 1991, Is the guinea-pig a rodent?, Nature. 351:649.PubMedCrossRefGoogle Scholar
  9. Gustafson, T.A., and Rutter, W J., 1990, The cysteine-rich domains of the insulin and insulin-like growth factor I receptors are primary determinants of hormone binding specificity, J. Biol. Chem. 265:18663.PubMedGoogle Scholar
  10. Hostetter, T.H., 1991, Diabetic Nephropathy, in: “The Kidney Vol. 2,” B.M. Brenner and F.C Rector, eds., W.B. Saunders Company, Philadelphia.Google Scholar
  11. King, G.L., and Kahn, C.R., 1981, Non-parallel evolution of metabolic and growth-promoting functions of insulin, Nature. 292:644.PubMedCrossRefGoogle Scholar
  12. Kurachi, H., Jobo, K., Ohta, M., Kawasaki, T., and Itoh, N., 1992, A new member of the insulin receptor family, insulin receptor-related receptor, is expressed perferentially in the kidney, Biochem. Biophys. Res. Commun. 187:934.PubMedCrossRefGoogle Scholar
  13. Mamula, P.W., Wong, K.-Y., Maddux, B.A., McDonald, A.R., and Goldfine, I.D., 1988, Sequence and analysis of promoter region of human insulin-receptor gene, Diabetes. 37:1241.PubMedCrossRefGoogle Scholar
  14. Mauer, S.M., Ellis, E.J., Bilous, R.W., and Steffes, M.W., 1989, The pathology of diabetic nephropathy, in: “Complications of Diabetes Mellitus,” B. Draznin, S. Melmed, and D. LeRoith, eds., Alan R. Liss Inc., New York.Google Scholar
  15. Murphy, L.J., Bell, G.I., and Friesen, H.G., 1987, Tissue distribution of insulin-like growth factor I and II messenger ribonucleic acid in the adult rat, Endocrinology. 120:1279.PubMedCrossRefGoogle Scholar
  16. Olefsky, J.M., 1990, The Insulin receptor. A multifunctional protein, Diabetes. 39:1009.PubMedCrossRefGoogle Scholar
  17. Osheroff, P.L., Ling, V.T., Vandlen, R.L., Cronin, M.J., and Lofgren, J.A., 1990, Preparation of biologically active 32P-labeled human relaxin; displaceable binding to rat uterus, cervix, and brain, J. Biol. Chem. 265:9396.PubMedGoogle Scholar
  18. Rosenzweig, J.L., LeRoith, D., Lesniak, M.A., Maclntyre, I., Sawyer, W.H., and Roth, J., 1983, Two distinct insulins in the guinea pig: the broad relevance of these findings to evolution of peptide hormones, Fed. Proc. 42:2608.PubMedGoogle Scholar
  19. Rubenstein, A.H., Melani, F., and Steiner, D.F., 1972, Circulating proinsulin: immunology, measurement, and biological activity. Handbook of Physiology, Section 7 Endocrinology. 1:515.Google Scholar
  20. Seino, S., Seino, M., Nishi, S., and Bell, G.I., 1989, Structure of the human insulin receptor gene and characterization of its promoter, Proc. Natl. Acad. Sci. USA. 86:114.PubMedCrossRefGoogle Scholar
  21. Shier, P., and Watt, V.M., 1989, Primary structure of a putative receptor for a ligand of the insulin family, J. Biol. Chem. 264:14605.PubMedGoogle Scholar
  22. Shier, P. and Watt, V.M., 1992, Tissue-specific expression of the rat insulin receptor-related receptor gene, Mol. Endocrinol. 6:723.PubMedCrossRefGoogle Scholar
  23. Shier, P., Willard, H.F. and Watt, V.M., 1990, Localization of the insulin receptor-related receptor gene to human chromosome 1, Cytogenet. Cell Genet. 54:80.PubMedCrossRefGoogle Scholar
  24. Smit, A.B., Vreugdenhil, E., Ebberink, R.H.M., Geraerts, W.P.M., Klootwijk, J., and Joosse, J., 1988, Growth-controlling molluscan neurons produce the precursor of an insulin-related peptide, Nature. 331:535.PubMedCrossRefGoogle Scholar
  25. Ullrich, A., Bell, J.R., Chen, E.Y., Herrera, R., Petruzzelli, L.M., Dull, T.J., Gray, A., Coussens, L., Liao, Y.-C., Tsubokawa, M., Mason, A., Seeburg, P.H., Grunfeld, C., Rosen, O.M., and Ramachandran, J., 1985, Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes, Nature. 313:756.PubMedCrossRefGoogle Scholar
  26. Ullrich, A., Gray, A., Tam, A.W., Yang-Feng, T., Tsubokawa, M., Collins, C., Henzel, W., Le Bon, T., Kathuria, S., Chen, E., Jacobs, S., Francke, U., Ramachandran, J., and Fujita-Yamaguchi, Y., 1986, Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity, EMBO J. 5:2503.PubMedGoogle Scholar
  27. Ullrich, A., and Schlessinger, J., 1990, Signal transduction by receptors with tyrosine kinase activity, Cell. 61:203.PubMedCrossRefGoogle Scholar
  28. Vanin E.F., 1985, Processed pseudogenes: characteristics and evolution, Ann. Rev. Genet. 19:253.PubMedCrossRefGoogle Scholar
  29. Watt, V.M., 1985, Sequence and evolution of guinea pig preproinsulin DNA, J. Biol. Chem. 260:10926.PubMedGoogle Scholar
  30. Yang-Feng, T.L., Francke, U., and Ullrich, A., 1985, Gene for human insulin receptor: localization to site on chromosome 19 involved in pre-B-cell leukemia, Science. 228:728.PubMedCrossRefGoogle Scholar
  31. Zhang, B., and Roth, R.A., 1991, Binding properties of chimeric insulin receptors containing the cysteine-rich domain of either the insulin-like growth factor I receptor or the insulin receptor related receptor, Biochemistry. 30:5113.PubMedCrossRefGoogle Scholar
  32. Zhang, B., and Roth, R.A., 1992, The insulin receptor-related receptor: tissue expression, ligand binding specificity, and signaling capabilities, J. Biol. Chem. 267:18320.PubMedGoogle Scholar
  33. Zierath, J.R., Galuska, D., Johansson, B.-L., and Wallberg-Henriksson, H., 1991, Effect of human C-peptide on glucose transport in in vitro incubated human skeletal muscle, Diabetologia. 34:899.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Valerie M. Watt
    • 1
  • Peter Shier
    • 1
  • Joanne Chan
    • 1
  • Bradley A. Petrisor
    • 1
  • Swarna K. Mathi
    • 1
  1. 1.Department of PhysiologyUniversity of TorontoTorontoCanada

Personalised recommendations