Skip to main content

Cell Cycle Control by the IGF-1 Receptor and Its Ligands

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 343))

Abstract

The interaction of the IGF-1 receptor with its ligands (IGF-1, IGF-II and insulin at supraphysiological concentrations) plays a major role in normal development and in the control of both normal and abnormal growth (for reviews, see Werner et al., 1991 and Lowe, 1991). The importance of the IGF-1 receptor in development is especially supported by the seminal experiments of Efstratiadis and co-workers (DeChiara et al., 1990, and personal communication). These investigators have shown that targeted disruption of the IGF-II gene results in progeny, which, at birth, has a body weight that is 70% the body weight of wild type litter mates. When both the IGF-II and the IGF-1 receptor genes are disrupted by homologous recombination, the homozygous mutant embryos at birth have a body weight that is only 30% the weight of wild type litter mates. Thus, it can be stated that the activation of IGF-1 receptor by its ligands (IGF-1 or IGF-II) accounts for 70% of embryonal murine growth.

corresponding author

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

IGF-1 or IGF-II:

insulin-like growth factor 1 or II

SV40:

simian virus 40

PDGF:

platelet derived growth factor

EGF:

epidermal growth factor

References

  • Baserga, R. and Rubin, R., 1993, Cell cycle and growth control. Crit. Rev. Eukar. Gene Expr. 3: 47–61.

    Google Scholar 

  • Bell, G.I., Stempien, M.M., Fong, N.M., and Rall, L.B, 1986, Sequences of liver cDNAs encoding two different mouse insulin-like growth factor I precursors. Nucl. Acids Res. 14:7873–7882.

    Article  PubMed  CAS  Google Scholar 

  • Clemmons, D.R., 1984, Multiple hormones stimulate the production of somatomedin by cultured human fìbroblasts. J. Clin. Endocrin. &Metab. 58:850–856.

    Article  CAS  Google Scholar 

  • Clemmons, D.R. and Shaw, D.S., 1983, Variables controlling somatomedin production by cultured human fibroblasts. J. Cell. Physiol. 115:137–142

    Article  PubMed  CAS  Google Scholar 

  • Clemmons, D.R. and Van Wyk, J.J., 1981, Somatomedin: physiological control and effects on cell proliferation, in: “Tissue Growth Factors,” R. Baserga, ed., Springer-Verlag KG, Berlin.

    Google Scholar 

  • Clemmons, D.R., Elgin, R.G., and James, P.E., 1986, Somatomedin-C binding to cultured human fibroblasts is dependent on donor age and culture density. J. Clin. Endocrinol. Metab. 63:996–1001.

    Article  PubMed  CAS  Google Scholar 

  • Cristofalo, V.J., Phillips, PJX, Sorger, T. and Gerhard, G., 1989, Alterations in the responsiveness of senescent cells to growth factors. J. Gerontol. 44:55–62.

    Article  PubMed  CAS  Google Scholar 

  • DeChiara, T.M., Efstradiatis, A. and Robertson, E. J., 1990, A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345:78–80.

    Article  PubMed  CAS  Google Scholar 

  • Drummond, I.A., Madden, S.L., Rohwer-Nutter, P., Bell, G.I., Sukhatme, V.P. and Rauscher, F.J., III, 1992, Repression of the insulin-like growth factor n gene by the Wilms tumor suppressor WT1. Science 257:674–678.

    Article  PubMed  CAS  Google Scholar 

  • Goldring MB., and Goldring, S.R., 1991, Cytoltines and cell growth control. Eukar Gene Express. 1:301– 326.

    CAS  Google Scholar 

  • Huang, S. and Terstappen, L.W.M.M., 1992, Formation of haematopoietic microenvironment and haematopoietic stem cells from single human bone marrow stem cells. Nature 360: 745–749.

    Article  PubMed  CAS  Google Scholar 

  • Hunter, T., 1991, Cooperation between oncogenes. Cell 64:249–270.

    Article  PubMed  CAS  Google Scholar 

  • Kaleko, M., Rutter, W.G. and Miller, A.D., 1990, Overexpression of the human insulin-like factor I receptor promotes ligand dependent neoplastk transformation. Mol. Cell. Biol. 10:464–473.

    PubMed  CAS  Google Scholar 

  • Lowe, Wl., Jr., 1991, Biological actions of the insulin-like growth factors. in: “Insulin-like Growth Factors: Molecular and Cellular Aspects,” D. LeRoith, ed., CRC Press.

    Google Scholar 

  • Mácaulay, V.M., 1992, Insulin-like growth factors and cancer. Brit.J. Cancer 65:311–320.

    Article  PubMed  Google Scholar 

  • McCubrey, J.A., Stillman, L.S., Mayhew, M.W., Algate, P.A., Dellow, R.A. and Kaleko, M., 1991, Growth promoting effects of insulin-like growth factor I (IGF-1) on hematopoietic cells. Overexpression of introduced IGF-1 receptor abrogates interleukin-3 dependency of murine factor dependent cells by ligand dependent mechanism. Blood 78:921–929.

    PubMed  CAS  Google Scholar 

  • Pietrzkowski, Z., Lammers, R., Carpenter, G., Soderquist, A.M., Limardo, M., Phillips, P.D., Ullrich, A. and Baserga, R., 1992, Constitutitive expression of insulin-like growth factor 1 and insulin-like growth 1 receptor abrogates all requirements for exogenous growth factors. Cell Growth and Diff. 3:199–205.

    CAS  Google Scholar 

  • Pietrzkowski, Z., Sell, C., Lammers, R., Ullrich, A. and Baserga, R., 1992, Roles of insulin-like growth factor 1 (IGF-1) and the IGF-1 receptor in epidermal growth factor-stimulated growth of 3T3 cells. Mol Cell Biol 12:3883–3889.

    PubMed  CAS  Google Scholar 

  • Pietrzkowski, Z., Wernicke, D., Porcu, P., Jameson, B.A. and Baserga, R., 1992, Inhibition of cell proliferation by peptide analogs of IGF-1. Cancer Res. 52:6447–6451.

    PubMed  CAS  Google Scholar 

  • Pietrzkowski, Z., Mulholland, G., Gomella, L., Jameson, B.A., Wernicke, D. and Baserga, R., 1993, Inhibition of growth of prostatic cancer cell lines by peptide analogs of IGF-1. Cancer Res. 53:1102– 1106

    PubMed  CAS  Google Scholar 

  • Porcu, P., Ferber, A., Pietrzkowski, Z., Roberts, C.T., Adamo, M., LeRoith, D. and Baserga, R., 1992, Roles of Insulin-like growth factor 1(IGF-1) and the IGF-1 receptor in epidermal growth factorstimulated growth of 3T3 cells. Mol. Cell. Biol. 12:3883–3889.

    Google Scholar 

  • Radna, R.L., Caton, Y., Jha, K.K., Kaplan, P., Li, G., Traganos, F. and Ozer, H.L., 1989, Growth of immortal simian virus 40 tsA transformed human fibroblasts is temperature dependent Molec. Cell. Biol. 9:3093–3096.

    CAS  Google Scholar 

  • Reiss, K., Porcu, P., Sell, C., Pietrzkowski, Z. and Baserga, R., 1992, The insulin-like growth factor 1 receptor is required for the proliferation of hemopoietic cells. Oncogene 7:2243–2248.

    PubMed  CAS  Google Scholar 

  • Scher, C.D., Shephard, R.C., Antoniades, H.N., and Stiles, C.D., 1979, Platelet derived growth factor and the regulation of the mammalian fibroblasts cell cycles. Biochim. Biophys, Acta 560:217–241.

    CAS  Google Scholar 

  • Travali, S., Reiss, K., Ferber, A., Petralia, S., Mercer, W.E., Calabretta, B. and Baserga, R., 1991, Constituuvely expressed c-myb abrogates the requirement for insulin-like growth factor 1 in 3T3 fibroblasts. Mol. Cell. Biol. 11:731–736.

    PubMed  CAS  Google Scholar 

  • Van Wyk, J.J., Underwood, L.E., DErcole, A.J., Clemmons, D.R., Pledger, W.J., Wharton, W.R. and Leof, E.B., 1981, Role of somatomedin in cellular proliferation, in: “The Biology of Normal Human Growth,” M. Ritzen et al., eds., Raven Press, N.Y.

    Google Scholar 

  • Werner, H., Stannard, B., Bach, M.A., LeRoith, D. and Roberts, C.T., Jr., 1990, Cloning and characterization of the proximal promoter region of the rat insulin-like growth factor 1 (IGF-1) receptor gene. Biochem. Biophys. Res. Comm. 169:1021–1027.

    Article  PubMed  CAS  Google Scholar 

  • Werner, H., Woloschak, M., Stannard, B., Shen-Orr, Z., Roberts, C.T. Jr. and LeRoith, D., 1991, The insulin-like growth factor receptor molecular biology, heterogeneity and regulation, in: “Insulin-like Growth Factors: Molecular and Cellular Aspects,” D. LeRoith, ed., CRC Press, Boca Raton.

    Google Scholar 

  • Yoshinouchi, M. and Baserga, R. The role of the IGF-1 receptor in the stimulation of cells by short pulses of growth factors. Cell Proliferation ,in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baserga, R., Porcu, P., Rubini, M., Sell, C. (1994). Cell Cycle Control by the IGF-1 Receptor and Its Ligands. In: Le Roith, D., Raizada, M.K. (eds) Current Directions in Insulin-Like Growth Factor Research. Advances in Experimental Medicine and Biology, vol 343. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2988-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2988-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6301-9

  • Online ISBN: 978-1-4615-2988-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics