Skip to main content

Multiple Pathogens May Induce Growth Factor Cascade Resulting in KS

  • Chapter
Drugs of Abuse, Immunity, and AIDS

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 335))

Abstract

In this brief review a list of potential pathogens is provided that are associated with Kaposi’s sarcoma (KS) and may contribute to the initiation and/or maintenance of growth of KS cells. For the end result, which is the characteristic appearance and grouping of KS cells, the same growth factors are needed in a set sequence and combination. However, the pathogens inducing these growth factors may be different. Induction of the same growth factors by diverse pathogens can result in the generation of endothelial cell growth and transformation in sequence recognized as various subtypes of KS. Indeed there has to be an initiator of growth factor release from CD4 lymphocytes other than HIV in classical (Mediterranean) KS. On the other hand, HIV infection alone is not enough to induce KS: patients with hemophilia acquiring HIV infection through blood products die with AIDS but without developing KS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. McKeating, P.D. Griffiths, RA. Weiss, HIV susceptibility conferred to human fibroblasts bycytomegalovirus-induced Fc receptor, Nature 343:659 (1990).

    Article  PubMed  CAS  Google Scholar 

  2. J. D. Benson, E.S. Huang, Human cytomegalovirus induces expression of cellular topoisomerase II, JVirol. 64:9 (1990).

    CAS  Google Scholar 

  3. B. J. Thomas, S. Efstathion, R.W. Honess, Acquisition of the human adeno-associated virus type-2 repgene by human herpesvirus type-6, Nature 351:78 (1991).

    Article  Google Scholar 

  4. R. I. Short, D. Jones, R. Kost, R. Witter, H-J Kung, Retrovirus insertion into herpesvirus in vitro andin vivo, Proc. Nat. Acad. Sci. USA 89:991 (1992).

    Article  Google Scholar 

  5. D. H. Spector, J.P. Vacquier, Human cytomegalovirus (strain AD 169) contains sequences related to theavian retrovirus oncogene v-mvc,Proc. Nat. Acad. Sci. USA 80:3889 (1983).

    Article  PubMed  CAS  Google Scholar 

  6. I. Boldogh, E. Beth, E-S Huang, S.K. Kyalwazi, G. Giraldo, Kaposi sarcoma. IV. Detection of CMVDNA, CMV RNA and CMNA in tumor biopsies, Internat J. Cancer 28:469 (1981).

    Article  CAS  Google Scholar 

  7. G. Giraldo, E. Beth, E-S Huang, Kaposi’s sarcoma and its relationship to cytomegalovirus (CMV) III.CMV DNA and CMV early antigen in Kaposi’s sarcoma, Internat J. Cancer 26:23 (1980).

    Article  CAS  Google Scholar 

  8. D. H. Spector, S.B. Shaw, C.J. Hock, D. Alvans, T. Mitsuyasu, M. Gottlieb, Association of humancytomegalovirus with Kaposi’s sarcoma, in: “Acquired Immune Deficiency Syndrome,” .S. Gottlieb, J.C. Groopman, eds., Proc Schering Corp UCLA Symposium, Allen R. Liss, New York, pp 109 (1984).

    Google Scholar 

  9. H. L. Ioachim, B. Dorsett, J. Melamed, V. Adsay, E.A. Santagada, Cytomegalovirus, angiomatosis and Kaposi’s sarcoma: new observations of a debated relationship, Modern Pathol. 5:169 (1992).

    CAS  Google Scholar 

  10. F. Gyorkey, J.G. Sinkovics, R.J. Luchi, J.D. Small, P. Craig, R. Rossen, P. Gyorkey, J. Melnick, Kaposi’ssarcoma in lymph nodes of patients with cytomegalovirus viremia, Proc. Am. Assoc. Cancer Res. 23:280 (Abstr. 1106) (1982).

    Google Scholar 

  11. R. F. Ambinder, C. Newman, G.S. Hayward, R. Bigger, M. Melbye, L. Kesters, E.V. March, P. Piot,P. Gigase, P.B. Wright, T.C. Quinn, Lack of association of cytomegalovirus with endemic African Kaposi’s sarcoma, J. Infect. Dis. 156:193 (1987).

    Article  PubMed  CAS  Google Scholar 

  12. A. Siddiqui, Hepatitis B virus DNA in Kaposi sarcoma, Proc. Natl. Acad. Sci. USA 80:4861 (1983).

    Article  PubMed  CAS  Google Scholar 

  13. Y. O. Huang, J.J. Li, M.G. Rush, B.J. Poiesz, A. Nicolaides, M. Jacobson, W.G. Zhang, E. Coutavas MA. Abbott, A.E. Friedman-Kien, HPV-16-related DNA sequences in Kaposi’s sarcoma, Lancet 339:515 (1992).

    Article  PubMed  CAS  Google Scholar 

  14. G. Barbanti-Brodano, M. Pagnani, P.G. Balboni, Studies on the association of Kaposi’s sarcoma with ubiquitous viruses, in: “AIDS and Associated Cancers in Africa, G. Giraldo, E. Beth-Giraldo, N. Clumeck, M-R Gharbi, S.K. Kyalwazi, G. de The, eds., Karger, Basel, pp 175 (1988).

    Google Scholar 

  15. F. Gyorkey, J.G. Sinkovics, J.L. Melnick, P. Gyorkey, Retroviruses in Kaposi sarcoma cells in AIDS, New Engt J. Med. 311:1183 (1984).

    Article  CAS  Google Scholar 

  16. K. Rappensberger, E. Tschachler, E. Zonzits, R. Gillitzer, A. Hatzakes, A. Kaloterakis, D.L. Mann, T.Popow-Kraupp, R J. Bigger, R. Berger, J. Stratigos, K. Wolff, G. Stingl, Endemic Kaposi’s sarcoma in human immunodeficiency virus type 1-seronegative persons: demonstration of retrovirus-like particles in cutaneous lesions, J. Invest. Dermatol. 95:371 (1990).

    Article  Google Scholar 

  17. D. A. Spandidos, A. Kaloterakis, M. Yiagnisis, A. Varatsas, J.K. Field, Ras, c-myc and c-erbB2oncoprotein expression in non-AIDS Mediterranean Kaposi’s sarcoma, Anticancer Res. 10:1619 (1990).

    PubMed  CAS  Google Scholar 

  18. F. Gyorkey, J.G. Sinkovics, K.W. Min, P. Gyorkey, A morphologic study on the occurrence and distribution of structures resembling viral nucleocapsids in collagen diseases, Am. J. Med 53:148 (1972).

    Article  PubMed  CAS  Google Scholar 

  19. J. G. Sinkovics, Tubuloreticular structures (TRS) in hairy cell leukemia, J. Biol. Resp. Modif. 6:573(1987).

    CAS  Google Scholar 

  20. F. Gyorkey, J.G. Sinkovics, P. Gyorkey, Tubuloreticular structures in Kaposi’s sarcoma, Lancet 2:984(1982).

    Article  PubMed  CAS  Google Scholar 

  21. S. A. Rich, T.R. Owens, L.E. Bartholomew, J.U. Gutterman, Immune interferon does not stimulateformation of alpha and beta interferon-induced human lupus type inclusions, Lancet 1:127 (1983).

    Article  PubMed  CAS  Google Scholar 

  22. J. Vogel, S.H. Hinrich, R.K. Reynolds, PA. Luciw, G. Jay, The HIV tat gene induces dermal lesions resembling Kaposi’s sarcoma in transgenic mice, Nature 335:606 (1985).

    Article  Google Scholar 

  23. B. R. Cullen, The HIV-1 Tat protein: an RNA sequence-specific processivity factor, Cell 63:655 (1990).

    Article  PubMed  CAS  Google Scholar 

  24. B. Ensoli, G. Barillari, S.Z. Salahuddin, R.C. Gallo, F. Wong-Staal, Tat protein of HIV-1 stimulates growth of cells derived from Kaposi’s sarcoma lesions of AIDS patients, Nature 345:84 (1990).

    Article  PubMed  CAS  Google Scholar 

  25. D. A. Relman, J.S. Loutit, T.M. Schmidt, S. Falkow, L.S. Tompkins, The agent of bacillary angiomatosis, New Engl. J. Med. 323:1573 (1990).

    Article  PubMed  CAS  Google Scholar 

  26. T. A. Steeper, H. Rosenstein ,J. Weiser, S. Inanipudi ,D.C. Snover ,Bacillary epithelioid angiomatosis involving the liver, spleen and skin in an AIDS patient with concurrent Kaposi’s sarcoma, Am. J. Clin. Pathol. 97:713 (1992).

    PubMed  CAS  Google Scholar 

  27. T. S. Croxson, D. Ebanks, D. Mildvan, Atypical mycobacteria and Kaposi’s sarcoma in the same biopsy specimens, New Engl. J. Med. 308:1476 (1983).

    PubMed  CAS  Google Scholar 

  28. D. K. Blanchard, M.B. Michelin-Norris, CA. Pearson, C.S. Freitag, J.Y. Djeu, Mycobacterium avium-intracellulare induces interleukin-6 from human monocytes and large granular lymphocytes, Blood 77:2218 (1991).

    PubMed  CAS  Google Scholar 

  29. S-C Lo, S. Tsai, J.R. Benish, J.W. Shih, D.J. Wear, D.M. Wong, Enhancement of HIV-1 cytocidal effects in CD4+ lymphocytes by the AIDS-associated mycoplasma, Science 251:1074 (1991).

    Article  PubMed  CAS  Google Scholar 

  30. S-C Lo, C.L. Buckholz, DJ. Wear, R.C. Hohm, A.M. Marty, Histopathology and doxycycline treatment in a previously healthy non-AIDS patient systemically infected by Mycoplasma fermentans (incognitusstrain), Modem Pathol. 4:750 (1991)

    CAS  Google Scholar 

  31. B. Ensoli, G. Barillari, R.C. Gallo, Cytokines and growth factors in the pathogenesis of AIDS-associated Kaposi’s sarcoma, Immunol. Reviews 127:147 (1992).

    Article  CAS  Google Scholar 

  32. B. C. Nair, A.L. DeVico, S. Nakamura, T.D. Copeland, Y. Chen, A. Patel, T. O’Neil, S. Oroszlan, R.C. Gallo, M.G. Sarngadharan, Identification of a major growth factor for AIDS-Kaposi’s sarcoma cells is oncostatin M, Science 255:1430 (1992).

    Article  PubMed  CAS  Google Scholar 

  33. J. Corbeil, LA. Evans, E. Vasak, D.A. Cooper, R. Penny, Culture and properties of cells derived from Kaposi sarcoma, J. Immunol. 146:2972 (1991).

    PubMed  CAS  Google Scholar 

  34. S. A. Miles, A.R. Rezai, J.F. Sabazar-Gonzalez, M. Vander Meyden, R.H. Stevens, D.M. Logan, R.T. Mitsuyasu, T. Taga, T. Hirano, T. Kishimoto, O. Martinez-Maza, AIDS Kaposi sarcoma-derived cells produce and respond to interleukin 6, Proc. Natl. Acad. Sci. USA 87:4068 (1990).

    Article  PubMed  CAS  Google Scholar 

  35. P. Delli Bovi, A.M. Curatola, F.G. Kern, A. Greco, M. Ittmann, C. Basilico, An oncogene isolated by transfection of Kaposi’s sarcoma DNA encodes a growth factor that is a member of the FGF family, Cell 50:729 (1987).

    Article  CAS  Google Scholar 

  36. L. Xerri, J. Hassoun, J. Planche, V. Guigou, J-J Grob, P. Pare, D. Birnbaum, O. de Lapeyriere, Fibroblast growth factor gene expression in AIDS-Kaposi’s sarcoma detected by in situ hybridization, Am. J. Pathol. 138:9 (1991).

    PubMed  CAS  Google Scholar 

  37. O. Brüstle, A. Aguzzi, D. Talarico, C. Basilico, P. Kleihues, O. Wiestler, Angiogenic activity of the K- fgf-hst oncogene in neural transplants, Oncogene 7:1177 (1992).

    PubMed  Google Scholar 

  38. H. A. Weich, S.Z. Salahuddin, P. Gill, S. Nakamura, R.C. Gallo, J. Folkmann, AIDS-associated Kaposi’s sarcoma-derived cells in long-term culture express and synthesize smooth muscle alpha-actin, Am. J. Pathol. 139:1251 (1991).

    PubMed  CAS  Google Scholar 

  39. S. A. Miles, O. Martinez-Maza, A. Rezai, L. Magpantay, T. Kishimoto, S. Nakamura, S.F. Radka, P.S. Linsey, Oncostatin M as a potent mitogen for AIDS-Kaposi’s sarcoma-derived cells, Science 255:1432 (1992).

    Article  PubMed  CAS  Google Scholar 

  40. D. P. Gearing, M.R. Comeau, DJ. Friend, S.D. Gimpel, C.J. Thut, J. McGourty, K.K. Brasher, JA. King, S. Gillis, B. Mosley, S.F. Ziegler, D. Cosman, The IL-6 signal transducer gp130: an oncostatin M receptor and affinity converter for the L1F receptor, Science 255:1434 (1992).

    Article  PubMed  CAS  Google Scholar 

  41. L. F. Fajardo, H.H. Kwan, J. Kowalski, S.D. Prionas, A.C. Allison, Dual role of tumor necrosis factor-a in angiogenesis, Am. J. Pathol. 140:539 (1992).

    PubMed  CAS  Google Scholar 

  42. G. Poli, A.L. Kinter, J.S. Justement, P. Bressler, J.H. Kehrl, A.S. Fauci, Retinoic acid mimics transforming growth factor ß in the regulation of human immunodeficiency virus expression in monocytic cells, Proc. Nat. Acad. Sci. USA 89:2689 (1992).

    Article  PubMed  CAS  Google Scholar 

  43. J. A. Turpin, M. Vargo, M.S. Meltzer, Enhanced HIV-1 replication in retinoid-treated monocytes, J. Immune 148:2539 (1992).

    CAS  Google Scholar 

  44. J. Folkmann, How is blood vessel growth regulated in normal and neoplastic tissue? Cancer Res. 46:461 (1986).

    Google Scholar 

  45. A. Wellstein, G. Zugmaier, JA. Califaro, F. Kern, S. Paih, M.E. Lippman, Tumor growth dependent on Kaposi’s sarcoma-derived fibroblast growth factor inhibited by pentosan polysulfate, J. Nat. Cancer Inst. 83:716 (1991).

    Article  PubMed  CAS  Google Scholar 

  46. Editorial. Exploiting angiogenesis, Lancet 337:208 (1991).

    Google Scholar 

  47. T. E. Maione, G.S. Gray, J. Petro, A.J. Hunt, A.L. Donner, S.I. Bauer, H.F. Carson, R.J. Sharpe, Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides, Science 247:77 (1990).

    Article  PubMed  CAS  Google Scholar 

  48. S. Kumar, Control of tumor growth: endothelial cell as an alternative target, Anticancer Res. 10:1443 (1990).

    Google Scholar 

  49. S.S. Brenn, D. Zagzag, A.M.C. Tsanaclis, S. Gately, M-P Elkouby, S.E. Brien, Inhibition of angiogenesis and tumor growth in the brain, J. Pathol. 137:1121 (1990).

    Google Scholar 

  50. B. Robaye, R. Mosselmans, W. Fiers, J.E. Dumont, P. Galand, Tumor necrosis factor induces apoptosis (programmed cell death) in normal endothelial cells in vitro, J. Pathol. 138:447 (1991).

    CAS  Google Scholar 

  51. J. E. Szakacs quoted in J.G. Sinkovics, Kaposi’s sarcoma: its oncogenes and growth factors, Crit. Rev. Hem-One. 11:87 (1991).

    Article  Google Scholar 

  52. J. G. Sinkovics, Interferons: antiangiogenesis agents, Can. J. Inf. Dis. 3:Suppl. X 1 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sinkovics, J.G., Szakacs, J.E., Gyorkey, F. (1993). Multiple Pathogens May Induce Growth Factor Cascade Resulting in KS. In: Friedman, H., Klein, T.W., Specter, S. (eds) Drugs of Abuse, Immunity, and AIDS. Advances in Experimental Medicine and Biology, vol 335. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2980-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2980-4_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6297-5

  • Online ISBN: 978-1-4615-2980-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics