Skip to main content

The Epsilon — Ritz Method for Solving Optimal Control Problems on Parallel Computers

  • Chapter
Mutual Impact of Computing Power and Control Theory
  • 100 Accesses

Abstract

Using Balakrishnan’s Epsilon Problem [1] formulation and the Rayleigh Ritz method with an orthogonal polynomial function basis, optimal control problems are transformed from the standard two point boundary value problem to a nonlinear programming problem. The resulting matrix-vector equations describing the optimal solution have standard parallel solution methods for implementation on parallel processor arrays. The method is modified to handle inequality constraints and some results are presented under which specialized nonlinear functions, such as sin and cosines, can be handled directly. Some computational results performed on an Intel Sugarcube are presented to illustrate that considerable computational savings can be realized by using the proposed solution method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. V. Balakrishnan (1968). On a New Computing Technique in Optimal Control. SIAM Journal on Control, 6, (2), 149–173.

    Article  MATH  Google Scholar 

  2. Frick, P. A. and D. J. Stech (1990). A New Approach for the Solution of Optimal Control Problems on Parallel Machines. In Proceedings of the 7th International Conference on Systems Engineering.

    Google Scholar 

  3. Frick, P. A. (1974). An Integral Formulation of the Epsilon Problem and a New Computational Approach to Control Function Optimization. Journal of Optimization Theory and Applications, 13, (5), 553–581.

    Article  MathSciNet  MATH  Google Scholar 

  4. Balakrishnan, A. V. (1968). On a New Computing Technique in Optimal Control and its Applications to Minimal Time Flight Profile Optimization. Journal of Optimization Theory and Applications,4, (1), 1–21.

    Article  Google Scholar 

  5. M. R. Hestenes, M. R. (1969). Multiplier and Gradient Methods. Journal of Optimization Theory and Applications, 4, (5).

    Google Scholar 

  6. Rektorys, K. (1977). (Translated from Czech by Michael Basch). Variational Methods in Mathematics, Science and Engineering. D. Reidel Publishing Co., Holland. Dordrecht.

    Google Scholar 

  7. Jones, A. P and G.P. McCormick (1970). A Generalization of the Method of Balakrishnan to Inequality Constaints and Initial Conditions. SIAM Journal on Control, 8, (2).

    Google Scholar 

  8. Di Pillo, G. L. and L. Grippo (1974). The Multiplier Method for Optimal Control Problems. Proceedings of the CSEI Conference on Optimization Problems in Engineering and Economics, Naples.

    Google Scholar 

  9. Di Pillo, G. L. and L. Grippo (1972). A Computing Algorithm for the Application of the Epsilon Method to Identification and Optimal Control Problems. Richerche Di Automatica, 3(1):54–77.

    Google Scholar 

  10. Fine, N. J. (1949). On the Walsh Functions. Transactions of the American Mathematical Society, 65:372–314.

    Article  MathSciNet  MATH  Google Scholar 

  11. Brewer, J. W. (1978). Kronecker Products and Matrix Calculus in System Theory. IEEE Transactions on Circuits and Systems, CAS-25(9):772–781.

    Article  MathSciNet  MATH  Google Scholar 

  12. Bertsekas, D. P. and J. N. Tsitsikis (1989). Parallel and Distributed Computation - Numerical Methods. Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  13. Kung„ S. Y. (1988). VLSI Array Processors. Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  14. Miele, A. (1975). Recent Advances in Gradient Algorithms for Optimal Control Problems. Journal of Optimization Theory and Applications,17(5/6):361–430.

    Article  MathSciNet  MATH  Google Scholar 

  15. Gellman, R. E. and R.E. Kalaba (1965). Quasi-linearization and Nonlinear Boundary Value Problems. Elsevier Press, New York.

    Google Scholar 

  16. Bojanczyk, A., R. P. Brent and H. T. Kung (1984). Numerically Stable Solution of Linear Equations using Mesh-connected Processors. SIAM Journal of Scientific and Statistical Computing, 5: 95–123.

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Hwang, C. and M. Chen (1985). Analysis and Optimal Control of Time-varying Linear Systems via Shifted Legendre Polynomials. International Journal of Control, 41(5):1317–1330.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Frick, P.A., Stech, D.F. (1993). The Epsilon — Ritz Method for Solving Optimal Control Problems on Parallel Computers. In: Kárný, M., Warwick, K. (eds) Mutual Impact of Computing Power and Control Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2968-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2968-2_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6291-3

  • Online ISBN: 978-1-4615-2968-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics