Skip to main content

Multivariable Constrained Adaptive Predictive Control Based on Pole Placement Design

  • Chapter
Mutual Impact of Computing Power and Control Theory

Abstract

A multivariable linear controller is based upon pole placement design developed from the family of all stabilizing controllers. In addition a long-range prediction objective function is minimized to satisfy constraints on any signal or linear combinations thereof. The controller is designed to cope with constant disturbances and step-wise setpoint changes. Simulations of single- and multivariable control problems illustrate superiority of the proposed algorithm over one-step strategies. The algorithm is expected to be superior to previous constrained predictive algorithms since it is closed loop in design. Finally it is demonstrated that the algorithm can directly be extended to handle varying plant parameters by incorporating parameter adaptivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arruti, A. and Flórez, J. (1992). Multivariable adaptive pole-assignment controller with saturation constraints. IEE Proc-D, 139, 13–20.

    MATH  Google Scholar 

  2. Åström, K. J. (1989). Application of robust and adaptive pole placement design technique. Int. J. of Adaptive Control and Signal Processing, 3, 169–189.

    Article  Google Scholar 

  3. Åström, K. J. and B. Wittenmark (1990). Computer controlled systems, Theory and design, 2/E. Prentice-Hall, Inc., Englewood Cliffs, N.J..

    Google Scholar 

  4. Campo, P. J. and M. Moran, M (1990). Robust control of processes subject to saturation nonlinearities. Corp. & Chem. Eng., 14, 343–358.

    Article  Google Scholar 

  5. Chang, T. S. and D. E. Seborg (1983). A linear programming approach for multivariable feedback control with inequality constraints. Int. J. of Control, 37, 583–597.

    Article  MATH  Google Scholar 

  6. Clarke, D. W., C. Mohtadi and P. S. Tuffs (1987). GPC - Part I. The basic algorithm. Automatica, 23, 137–148.

    Article  MATH  Google Scholar 

  7. Danzig, G. B. (1963). Linear Programming and Extensions. Princeton University Press, Princeton, N. J.

    Google Scholar 

  8. Dion, J. M., L. Lugard, A. Franco, Nguyen Minh Tri and D. Rey (1991), MIMO adaptive constrained predictive control case study: An environmental test chamber. Automatica, 27, 611–626.

    Article  Google Scholar 

  9. Garcia, C. E. and A. M. Morshedi (1986). Quadratic programming solution of dynamic matrix control (QDMC). Chem. Eng. Commun., 46, 73–87.

    Article  Google Scholar 

  10. Kulhavý, R. and M. Kárný(1984). Tracking of slowly varying parameters by directional forgetting. IFAC 9th Triennal World Congress, Budapest, Hungary, Preprint Vol. 2, 687–692.

    Google Scholar 

  11. Küenzi, H. P., H.G. Tzschach, and C. A. Zehnder (1971), Numerical methods of mathematical optimization. Academic Press, New York.

    Google Scholar 

  12. Middleton, R. H. and G. C. Goodwin (1990). Digital control and estimation. A unified approach. Prentice Hall, Inc. Englewood Cliffs, N. J.

    MATH  Google Scholar 

  13. Mikleš, J. (1990). A multivariable self-tuning controller based on pole-placement design. Automatica, 26, 293–302.

    Article  MATH  Google Scholar 

  14. Payne, A. N. (1986). Adaptive one-step-ahead control subject to an input-amplitude constraints. Int. J. Control, 43, 1257–1269.

    Article  MATH  Google Scholar 

  15. Rundquist, L. and K. J. Aström (1989). Integrator windup and how to avoid it. Proc. of ACC, Pittsburg, 2, 1693–1698.

    Google Scholar 

  16. Tsang, T. T. C., and D. W. Clarke (1988). Generalised predictive control with input constraints. IEE Proc.-D, 136, 451–460.

    MathSciNet  Google Scholar 

  17. Wilkinson, D. J., A. J. Morris and M. T. Tham (1990). Multivariable constrained GPC (A comparison with QDMC). Proc. of ACC, San Diego. 1620–1625.

    Google Scholar 

  18. Zafiriou, E. and A. L. Marchal (1991). Stability of SISO quadratic dynamic matrix control with hard input constraints. AIChE Journal, 37, 1550–1560.

    Article  Google Scholar 

  19. Zhang, C. and R. J. Evans (1987). Amplitude constrained adaptive control. Int. J. of Control, 46, 53–64.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fikar, M., Jørgensen, S.B. (1993). Multivariable Constrained Adaptive Predictive Control Based on Pole Placement Design. In: Kárný, M., Warwick, K. (eds) Mutual Impact of Computing Power and Control Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2968-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2968-2_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6291-3

  • Online ISBN: 978-1-4615-2968-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics