Skip to main content

Interactions between Tumor Necrosis Factor Alpha and Glucocorticoid Hormones in the Regulation of Tumor Cell Growth in Vitro

  • Chapter
Combination Therapies 2

Abstract

Tumor necrosis factor-alfa (TNF-α) is a multifunctional cytokine with an important role in inflammation, tissue repair and immune reactions1,2,3 This molecule also exerts a cytocidal activity against some tumor cell lines but not against normal cells “in vitro”4. Several tumor cells are or become resistant, however, to the growth-inhibiting activity of TNF-α4,5,6 and the cytokine can also stimulate the growth of normal human fibroblasts as well as of some trasformed cells in culture7,8. Little is known about the mechanisms responsible for TNF-α mediated cytotoxicity9 and cytostatic, cytolytic and apoptotic4,10 effects have been reported in different cellular models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beutler B and Cerami A. Cachectin (Tumor Necrosis Factor): a macrophage hormone governing cellular metabolism and inflammatory response. Endocrine Reviews, 9: 57 (1988)

    Article  PubMed  CAS  Google Scholar 

  2. Beutler B and Cerami A. Cachectin: more than a tumor necrosis factor. New Eng J Med 316: 379 (1987)

    Article  PubMed  CAS  Google Scholar 

  3. Akira S, Hirano T, Taga T and Kishimoto T. Biology of multifunctional cytokines: IL6 and related molecules (IL1 and TNF). FASEB J 4: 2860 (1990)

    PubMed  CAS  Google Scholar 

  4. Sugarman BJ, Aggarwal BB, Hass PE, Figari IS, Palladino MAJr and Shepard HM. Recombinant human tumor necrosis factor alpha: effects on proliferation of normal and transformed cells in vitro. Science 230: 943 (1985)

    Article  PubMed  CAS  Google Scholar 

  5. Tsujimoto M, Yip YK and Vilcek J. Tumor necrosis factor: specific binding and internalization in sensitive and resistant cells. Proc. Natl. Acad. Sci. USA 82: 7626 (1985)

    Article  PubMed  CAS  Google Scholar 

  6. Patek PQ and Ling Y. In vitro selection of a cell line for resistance to lysis by tumor necrosis factor-a selects for reduced tumorogenicity. J. Immunol. 146: 3457 (1991)

    PubMed  CAS  Google Scholar 

  7. Palombella VJ and Vilcek J. Mitogenic and cytotoxic actions of tumor necrosis factor in BALB/c 3T3 cells: role of phospholipase activation. J. Biol. Chem. 264: 18128 (1989)

    PubMed  CAS  Google Scholar 

  8. Lachman LB, Brown DC and Dinarello CA. Growth-promoting effect of recombinant IL-1 and tumor necrosis factor for a human astrocytoma cell line. J. Immunol. 138: 2913 (1987)

    PubMed  CAS  Google Scholar 

  9. Larrick JW and Wright SC. Cytotoxic mechanism of tumor necrosis factor-a. FASEB J, 4: 3215 (1990)

    PubMed  CAS  Google Scholar 

  10. Laster SM, Wood JC and Gooding LR. Tumor necrosis factor can induce both apoptotic and necrotic forms of cell lysis. J. Immunol. 141: 2629 (1988)

    PubMed  CAS  Google Scholar 

  11. Kyprianou N and Isaacs TT. Activation of programmed cell death in the rat ventral prostate after castration. Endocrinology, 122: 552 (1988)

    Article  PubMed  CAS  Google Scholar 

  12. Willie AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature, 284: 555 (1980)

    Article  Google Scholar 

  13. Nieto MA. and Lopez-Rivas A. 1989. IL-2 protects T lymphocytes from glucocorticoid-induced DNA fragmentation and cell death. J. Immunol. 143: 4166 (1989)

    Google Scholar 

  14. Suffys F., Beyaert R, Van Roy F and Fiers W. Reduced tumor necrosis factor-induced cytotoxicity by inhibition of arachidonic acid metabolism. Biochem. Biophys. Res. Commun. 149: 735 (1987)

    Article  PubMed  CAS  Google Scholar 

  15. Tsujimoto M, Okamura N and Adachi H. Dexamethasone inhibits the citotoxic activity of tumor necrosis factor. Biochem. Biophys. Res. Commun. 153: 109 (1988)

    Article  PubMed  CAS  Google Scholar 

  16. Pagé M, Bejaoui N, Cinq-Mars B, Lemieux P. Optimization of the tetrazolium-based colorimetric assay for the measurement of cell number and cytotoxicity. Int. J. Immunopharm. 10: 785 (1988)

    Article  Google Scholar 

  17. Pelicci G, Pagliacci MC, Lanfrancone L, Pelicci PG, Grignani F, Nicoletti I. Inhibitory effect of the somatostatin analogue octreotide (SMS 201–995) on rat pituitary tumor cells (GH3) proliferation “in vitro”. J. Endocrinol. Invest. 13: 657 (1990)

    PubMed  CAS  Google Scholar 

  18. Green LM, Reade JL and Wave CF. Rapid colorimetric assays for cell viability: application to the quantitation of cytotoxic and growth inhibitory lymphokines. J. Immun. Methods, 20: 257 (1984)

    Article  Google Scholar 

  19. Fried J, Perez AG, Clarkson BD. Rapid hypotonic method for flow cytofluorometry of monolayer cell cultures. Some pitfalls in staining and data analysis. J. Histochem. Cytochem. 26: 921 (1978)

    Article  PubMed  CAS  Google Scholar 

  20. Pagliacci MC, Tognellini R, Grignani F and Nicoletti I. Inhibition of human breast cancer cell (MCF-7) growth in vitro by the somatostatin analog SMS 201–995: effects on cell cycle parameters and apoptotic cell death. Endocrinology, 129: 2555 (1991)

    Article  PubMed  CAS  Google Scholar 

  21. Flower RJ and Blackwell GJ. Anti-inflammatory steroids induce biosynthesis of a phospholipase A2 inhibitor which prevents prostaglandin generation. Nature, 278: 456 (1979)

    Article  PubMed  CAS  Google Scholar 

  22. Clark MA, Chen MJ, Crooke ST and Bomalaski JS. Tumor necrosis factor (cachectin) induces phospholipase A2-activating protein in endothelial cells. Biochem. J. 250: 125 (1988)

    PubMed  CAS  Google Scholar 

  23. Kull FC Jr and Cuatrecasas P. Possible requirement of internalization in the mechanism of in vitro cytotoxicity in tumor necrosis factor serum. Cancer Res. 41: 4885 (1981)

    PubMed  CAS  Google Scholar 

  24. Kusher DI, Ware CF and Gooding LR. Induction of the heat shock response protects cells from lysis by tumor necrosis factor. J. Immunol. 145: 2925 (1990)

    PubMed  CAS  Google Scholar 

  25. Sugawara S, Nowicki M, Xie S, Song HJ and Dennert G. Effects of stress on lysability of tumor targets by cytotoxic T cells and tumor necrosis factor. J. Immunol. 145: 1991 (1990)

    PubMed  CAS  Google Scholar 

  26. Beato M. Gene regulation by steroid hormones. Cell, 56: 335 (1989)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nicoletti, I., Migliorati, G., Pagliacci, M.C., Grignani, F., Riccardi, C. (1993). Interactions between Tumor Necrosis Factor Alpha and Glucocorticoid Hormones in the Regulation of Tumor Cell Growth in Vitro . In: Garaci, E., Goldstein, A.L. (eds) Combination Therapies 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2964-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2964-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6289-0

  • Online ISBN: 978-1-4615-2964-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics