Skip to main content

Combination Therapy with Thymosin α1 and Cytokines in the Treatment of Cancer and Infectious Diseases

  • Chapter
Combination Therapies 2

Abstract

During recent years, many studies have stressed the importance of new approaches in the use of biological response modifiers (BRMs) in the treatment of cancer and infectious diseases. Although there is general agreement on the therapeutical potential of these agents, their clinical use did not yield the expected results. As a consequence, in the attempt to improve the efficacy of these molecules, many groups are trying different approaches, including combination therapies with various cytokines. In particular, it seems likely that combinations of different BRMs can result in a more potent effect than single treatments (1–4) The rationale of this new approach stems from the observations that immune physiologic responses involve cascades and feedback networks in which the release of one cytokine modulate both cytokine and cytokine-receptor production. Moreover, combination of BRMs could affect different immune effector cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brunda MJ, Bellantoni D, Sulich V. In vivo anti-tumor activity of combinations of interferon a and interleukin-2 in a murine model. Correlation of efficacy with the induction of cytotoxic cells resembling natural killer cells. Int. J Cancer 1987; 40: 365–71.

    Article  PubMed  CAS  Google Scholar 

  2. Ciolli V, Gabriele L, Sestili P, et al. Host antitumor mechanism in the combined IL-1/IL-2 therapy in mice injected with highly metastatic Friend leukemia cells. Effects on rstablished metastases. J Exp Med 1991; 173: 313–22.

    CAS  Google Scholar 

  3. Iligo M, Sakurai M, Tamura T, Saijo N, Hoshi A. In vivo antitumor activity of multiple injections of recombinant interleukin-2, alone and in combination with three different types of recombinant interferon, on various syngenic murine tumors. Cancer Res 1988; 48: 260–4.

    Google Scholar 

  4. McIntosh JK, Mulè JJ, Krosnick JA. Rosenberg SA. Combination cytokine immunotherapy with tumor necrosis factor a, interleukin 2, and a-interferon and its synergistic antitumor effects in mice. Cancer Res 1989; 49: 1408–14.

    PubMed  CAS  Google Scholar 

  5. Thurman GB, Seals C, Low TLK, and Goldstein AL. Restorative effects of thymosin polypeptides on purified protein derivative-dependent migration inhibition factor production by peripheral blood lymphocytes of adult thymectomized guinea pigs. J. Biol. Resp. Mod. 1984; 3: 160.

    CAS  Google Scholar 

  6. Ohta Y, Sueki K, Kitta K, Takemoto K, Ishitsuk H, and Yagi Y. Comparative studies on the immunosuppressive effect among 5-deoxy-5-fluorouridine, ftorafur, and 5-fluorouracil. Gann. 1980; 71: 190.

    PubMed  CAS  Google Scholar 

  7. Ohta Y, Tezuka E, Tamura S, and Yagi Y. Thymosin alpha 1 exerts protective effect against the 5- FU induced bone-marrow toxicity. Int. J. Immunopharmac. 1985; 7: 761.

    Article  CAS  Google Scholar 

  8. Ohta Y, Tezuka E, Tamura S, and Yagi Y., N. Y. Acad. Med. 1989; 65: 111.

    Google Scholar 

  9. Kouttab NM, Goldstein AL, Lu M, Lu L, Campbell B, and Maizel AL. Production of human B and T cell growth factor is enhanced by thymic hormones. Immunopharmacology 1988; 16: 97.

    Article  PubMed  CAS  Google Scholar 

  10. Haung KY, Kind PD, Jagoda EM, Goldestein AL. Thymosin treatment modulates productions of interferon. J. Int. Res. 1981; 1: 411.

    Google Scholar 

  11. Shoham J, Eshel I, Aboud M, Salzberg S. Thymic hormonal activity on human peripheral blood lymphocytes, in vitro. II. Enhancement of the production of immune interferon by activated cells. J. Immunol. 1980; 125: 54.

    PubMed  CAS  Google Scholar 

  12. Svedersky LP, Hui A, May L, McKay P, and Stebbing N. Induction and augmentation of mitogen-induced immune interferon production in human peripheral blood lymphocytes by a-desacetyl thymosin al. Eur. J. Immunol. 1982; 12: 244.

    Article  PubMed  CAS  Google Scholar 

  13. Sztein MB, Serrate SA. Characterization of the immunoregulatory properties of thymosin al on interleukin-2 production and interleukin-2 receptor expression in normal human lymphocytes. Int J. Immunopharmac. 1989; 11: 789.

    Article  CAS  Google Scholar 

  14. Sztein MB, Serrate SA, and Goldstein AL. Modulation of interleukin 2 receptor expression on normal human lymphocytes thymic hormones. Proc. Natl. Acad. Sci. USA 1986; 83: 6107.

    Article  PubMed  CAS  Google Scholar 

  15. Leichtling KD, Serrate SA, Sztein MB. Thymosin alpha 1 modulates the expression of high affinity interleukin 2 receptors on normal human lymphocytes. Int. J. Immunopharmac. 1990; 12: 19–29.

    Article  CAS  Google Scholar 

  16. Sztein MB, Serrate SA. Characterization of the immunoregulatory properties of thymosin al on interleukin-2 production and interleukin-2 receptor expression in normal human lymphocytes. Int J. Immunopharmac. 1989; 11: 789–80.

    Article  CAS  Google Scholar 

  17. Mule’ JJ, Shu S, Rosenberg SA. The anti tumor efficacy of lymphokine-activated killer cells and recombinant interleukin- 2 in vivo. J. Immunol. 1985; 135: 646–652.

    Google Scholar 

  18. Mastino A, Favalli C, Grelli S, Innocenti F, Garaci E. Thymosin a 1 potentiates interleukin 2-induced cytotoxic activity in mice. Cell. Immunol. 1991; 133: 196–205.

    Article  PubMed  CAS  Google Scholar 

  19. Favalli C, Jezzi T, Mastino A, Rinaldi-Garaci C, Riccardi C, and Garaci E. Modulation of natural killer activity by thymosin alpha 1 and interferon. Cancer Immunol. Immunother. 1985; 20: 189–192.

    Article  CAS  Google Scholar 

  20. Mastino A, Favalli C, Grelli S, Rasi G, Pica F, Goldstein AL, Garaci E. Combination therapy with thymosin al potentiates the anti-tumor activity of interleukin-2 with cyclophosphamide in the treatment of the Lewis lung carcinoma in mice. Int.J.Cancer 1992; 50: 1–7.

    Article  Google Scholar 

  21. Leichtling KD, Serrate SA, and Sztein MB. Thymosin alpha 1 modulates the expression of high affinity interleukin 2 receptors on normal human lymphocytes. Int. J. Immunopharmac. 1990; 12: 19.

    Article  CAS  Google Scholar 

  22. Serrate SA, Schulof RS, Leondaridis L, Goldstein AL, and Sztein M. Modulation of human natural killer cell cytotoxic activity: limphokine production, and interleukin 2 receptor expression by thymic hormones. J. Immunol. 1987; 139: 2338.

    Google Scholar 

  23. Favalli C, Jezzi T, Mastino A, Rinaldi-Garaci C, Riccardi C, and Garaci E. Modulation of natural killer activity by thymosin alpha 1 and interferon. Cancer Immunol. Immunother. 1985; 20: 189.

    Article  PubMed  CAS  Google Scholar 

  24. Favalli C, Mastino A, Jezzi T, Grelli S, Goldstein AL, and Garaci E. Synergistic effect of thymosin al and alpha-beta Interferon on NK activity in tumor-bearing mice. Int. J. Immunopharmac. 1989; 11: 443.

    Article  CAS  Google Scholar 

  25. Bistoni F, Marconi P, Frati L, Bonmassar E, Garaci E. Increase of mouse resistance to Candida Albicans infection by thymosin alpha 1. Infect. Immun. 1982; 36: 609–614.

    PubMed  CAS  Google Scholar 

  26. Fujiki T, Tanaka A. Antibacterial activity of recombinant murine beta interferon Infect. Immun. 1988; 56: 548–551.

    CAS  Google Scholar 

  27. Jeevan A, Asherson GL. Recombinant interleukin-2 limits the replication of mycobacterium lepraemurinum and mycobacterium bovis B CG in mice. Infect. Immun. 1988; 56: 660–664.

    PubMed  CAS  Google Scholar 

  28. Phinching AJ. HIV/AIDS pathogenesis and treatment: new twists and turns. Cur. Opin. Immunol. 1991; 3: 537–542.

    Article  Google Scholar 

  29. Garaci E, Mastino A, and Favalli C. Enhanced immune response and antitumor immunity with combinations of biological response modifiers. Bull.

    Google Scholar 

  30. Belardelli F, Gresser I, Maury C, Duvillard D, Prade M, Maunoury MT. antitumor effects of interferon in mice injected with interferon-sensitive and inteferon-resistant Friend Leukemia cella. III Inhibition of growth and necrosis of tumor implanted subcoutaneously. Int J Cancer 1983; 31: 649–653.

    Article  PubMed  CAS  Google Scholar 

  31. Gresser I, Maury C, Wooddrow D, et al. Interferon treatment markedly inhibits the development of tumor metastases in the liver and spleen and increases survival time of mice after intravenous inoculation of Friend erythroleukemia cells. Int J. Cancer 1988; 41: 135–142.

    Article  PubMed  CAS  Google Scholar 

  32. Grasser I, Maury C, Carnaud C, De Maeyer E, Maunoury MT, Belardelli F. Antitumor effects of interferon in mice injected with interferon-sensitive and interferon-resistant Friend erythroleukemia cells. VIII. Role of the immune system in the inhibition of visceral metastases. Int J. Cancer 1990; 46: 468474.

    Google Scholar 

  33. Gresser I, Carnaud C, Maury C. et al. Host humoral and cellular mechanisms in the continued suppression of Friend erythroleukemia metastases after interferon αß treatment in mice. J. Exp. Med. 1991; 173: 1193–1203.

    Article  PubMed  CAS  Google Scholar 

  34. Belardelli F, Ciolli V, Testa U, et al. Antitumor effects of interleukin-2 and interleukin-1 in mice transplantated with different syngeneic tumors. Int. J. Cancer 1989; 44: 1108–16.

    Article  PubMed  CAS  Google Scholar 

  35. Belardelli F, Gabriele L, Proietti E, et al. Sinergistic antitumor effects of combined IL-1/IFNα/ß therapy in mice injected with metastatic Friend erythroleukemia cells. Int. J. Cancer 1991; 49: 274–278.

    Article  PubMed  CAS  Google Scholar 

  36. Belardelli F, Ferrantini M, Maury C, Santurbano L, Gresser I. On the biologic and biochemical differences between in vitro and in vivo passaged Friend erythroleukemia cells. Tumorigenicity and capacity to metastaside. Int. J. Cancer 1984; 34: 389–395.

    Article  PubMed  CAS  Google Scholar 

  37. Garaci E, Pica F, Mastino A, Palamara AT, Belardelli F, Favalli C. Antitumor effect of thymosyn α1/Interleukin-2 or thymosyn α1/Interferona/ß following cyclophosphamide in mice injected with highly metastatic friend erythroleukemia cells. J Immunother. 1993; 13: 7–17.

    Article  CAS  Google Scholar 

  38. Garaci E and Favalli C. Combination therapy with thymic hormones and cytokines after chemotherapy in cancer treatment. Combination Therapies, Ed. by A.L. Goldstein and E. Garaci, N. York, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Garaci, E., Mastino, A., Pica, F., Favalli, C. (1993). Combination Therapy with Thymosin α1 and Cytokines in the Treatment of Cancer and Infectious Diseases. In: Garaci, E., Goldstein, A.L. (eds) Combination Therapies 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2964-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2964-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6289-0

  • Online ISBN: 978-1-4615-2964-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics