Skip to main content

Biological Significance and Therapeutic Potential of Tumor-Associated Leukocytes

  • Chapter
  • 40 Accesses

Abstract

Macrophages are a major component of the lymphoreticular infiltrate of rodent and human tumors (Mantovani et al 1992a). Since these cells are situated at the very interface between tumor and host, they may represent a strategically located target for therapeutic intervention. Interest in these cells is stimulated by the knowledge that macrophages have the potential to kill neoplastic cells including drug-resistant variants surviving conventional chemotherapy (Allavena et al 1987).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allavena, P., Grandi, M., D’Incalci, M., Geri, O., Giuliani, F.C., and Mantovani, A., 1987, Human tumor cell lines with pleiotropic drug resistance are efficiently killed by Interleukin-2 activated killer cells and by activated monocytes. Int. J. Cancer, 40: 104.

    Article  PubMed  CAS  Google Scholar 

  • Allavena, P., Peccatori, F., Maggioni, D., Sironi, M., Colombo, N., Lissoni, A., Galazka, A., Meiers, W., Mangioni, C., and Mantovani A., 1990, Intraperitoneal recombinant g-interferon in patients with recurrent ascitic ovarian carcinoma: modulation of cytotoxicity and cytokine production in tumor-associated effectors and major histocompatibility antigen expression on tumor cells. Cancer Res., 50: 7318.

    PubMed  CAS  Google Scholar 

  • Bernasconi, S., Peri G., Sironi, M., and Mantovani, A., 1991, Involvement of leukocyte (B2) integrins (CD18/CD11) in human monocyte tumoricidal activity. Int. J. Cancer, 49: 267.

    Article  PubMed  CAS  Google Scholar 

  • Bottazzi, B., Polentarutti, N., Acero, R., Balsari, A., Boraschi, D., Ghezzi, P., Salmona, M., and Mantovani, A., 1983, Regulation of the macrophage content of neoplasms by chemoattractants. Science, 220: 210.

    Article  PubMed  CAS  Google Scholar 

  • Bottazzi, B., Colotta, F., Sica, A., Nobili, N. and Mantovani, A., 1990a, A chemoattractant expressed in human sarcoma cells (Tumor-derived chemotactic factor, TCDF) is identical to monocyte chemoattractant protein- 1/monocyte chemotactic and activating factor (MCP-1/MCAF). Int. J. Cancer, 45: 795.

    Article  CAS  Google Scholar 

  • Bottazzi, B., Erba, E., Nobili, N., Fazioli, F., Rambaldi, A. and Mantovani, A., 1990b, A paracrine circuit in the regulation of the proliferation of macrophages infiltrating murine sarcomas. J. Immunol., 144: 2409.

    CAS  Google Scholar 

  • Bottazzi, B., Walter, S., Govoni, D., Colotta F., and Mantovani, A., 1992, Monocyte chemotactic cytokine gene transfer modulates macrophage infiltration, growth and susceptibility to IL-2 therapy of a murine melanoma. J. Immunol., 148: 1280.

    PubMed  CAS  Google Scholar 

  • Colombo, N., Peccatori, F., Paganin, C., Bini, S., Brandely, M., Mangioni, C., Mantovani, A., and Allavena, P., 1992, Anti-tumor and immunomodulatory activity of intraperitoneal administration of IFN g in ovarian carcinoma patients with minimal residual tumor after chemotherapy, Int. J. Cancer, in press.

    Google Scholar 

  • Evans, R., and Cullen, R.T., 1984, In situ proliferation of intratumor macrophages. Journal Leukocyte Biology, 35: 561.

    CAS  Google Scholar 

  • Furutani, Y., Nomura, H., Notake, M., Oyamada, Y., Fukui, T., Yamada, M., Larsen, C.G., Oppenheim, J.J., and Matsushima, K., 1989, Cloning and sequencing of the cDNA for human monocyte chemotactic and activating factor (MCAF). Biochem. biophys. Res. Commun., 159: 248.

    Article  Google Scholar 

  • Jonjic, N., Jilek, P., Bernasconi, S., Peri, G., Martin-Padura, I., Cenzuales, S., Dejana, E., and Mantovani, A., 1992, Molecules involved in the adhesion and cytotoxicity of activated monocytes on endothelial cells. J. Immunol., 148: 2080.

    PubMed  CAS  Google Scholar 

  • Mahoney, K.H., and Heppner, G.H., 1987, FACS analysis of tumor associated macrophage replication: Differences between metastatic and nonmetastatic murine mammary tumors. Journal Leukocyte Biology, 41: 205.

    CAS  Google Scholar 

  • Mantovani, A., Bottazzi, B., Colotta, F., Sozzani, S., and Ruco, L., 1992a, Origin and function of tumor-associated macrophages. Immunology Todayin press.

    Google Scholar 

  • Mantovani, A., Bussolino, F., and Dejana, E., 1992b, Cytokine regulation of endothelial cell function. Faseb J., in press.

    Google Scholar 

  • Matsushima, K., Larsen, C.G., DuBois, G.C., and Oppenheim, J.J., 1989, Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J. Exp. Med., 169: 1485.

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim, J.J., Zachariae, C.O.C., Mukaida, N., and Matsushima, K., 1991, Properties of the novel proinfammatoty supergene “Intercrine” cytokine family. Annual Review of Immunol., 9: 617.

    Article  CAS  Google Scholar 

  • Pujade-Lauraine, E., Colombo, N., Namer, N., Fumoleau, P., Monnier, A., Nooy, M.A., Falkson, G., Mignot, L., Bugat, R., Oliveira, C.M.D., Mousseau, M., Netter, G., Oberling, F.,Coiffier, B., and Brandely, M., 1990, Intraperitoneal human r-IFN gamma in patients with residual ovarian carcinoma (OC) at second look laparotomy (SLL). ASCO, 9:156abs., 111.

    Google Scholar 

  • Sica, A., Wang, J.M., Colotta, F., Dejana, E., Mantovani, A., Oppenheim, J.J., Larsen, C.G., Zachariae, C.O., and Matsushima, K., 1990, Monocyte chemotactic factor gene expression induced in endothelial cells by IL-1 and tumor necrosis factor. J. Immunol., 144: 3034.

    PubMed  CAS  Google Scholar 

  • Snyderman, R., and Cianciolo, G.J., 1984, Immunosuppressive activity of the retroviral envelope protein P15E and its possible relationship to neoplasia. Immunology Today, 5: 240.

    Article  CAS  Google Scholar 

  • Valente, A.J., Fowler, S.R., Sprague, E.A., Kelley, J.L., Suenram, A.C. and Schwartz, C.J., 1984, Initial characterization of a peripheral blood mononuclear cell chemoattractant derived from cultured arterial smooth muscle cells. Am. J. Pathol., 117: 479.

    Google Scholar 

  • Van Damme, J., Decock, B., Lenaerts, J.P., Conings, R., Bertini R., Mantovani, A. and Billiau, A., 1989, Identification by sequence analysis of chemotactic factors for monocytes produced by normal and transformed cells stimulated with virus, double stranded RNA or IL-1. Europ. J. Immunol., 19: 2367.

    Article  Google Scholar 

  • Walter, S., Bottazzi, B., Govoni, D., Colotta, F., and Mantovani, A., 1991, Macrophage infiltration and growth of sarcoma clones expressing different amounts of monocyte chemotactic protein/JE. Int. J. Cancer, 49: 431.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J.M., Cianciolo, G.J., Snyderman, R., and Mantovani, A., 1986, Coexistence of a chemotactic factor and a retroviral P15E-related chemotaxis inhibitor in human tumor cell culture supernatants. J. Immunol., 137: 2726.

    PubMed  CAS  Google Scholar 

  • Yoshimura, T., Yuhki, N., Moore, S.K., Appella, E., Lerman, M.I., and Leonard, E.J., 1989, Human monocyte chemoattractant protein-1 (MCP-1). Full-lenght cDNA cloning, expression in mitogen-stimulation blood mononuclear leukocytes, and sequence similarity to mouse competence gene JE. FEBS Letters, 244: 487.

    Article  PubMed  CAS  Google Scholar 

  • Zachariae, C.O.C., Anderson, A.O., Thompson, H.L., Appella, E., Mantovani, A., Oppenheim, J.J. and Matsushima, K., 1990, Properties of monocyte chemotactic and activating factor (MCAF) purified from a human fibrosarcoma cell line. J. Exp. Med., 171: 2177.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mantovani, A. et al. (1993). Biological Significance and Therapeutic Potential of Tumor-Associated Leukocytes. In: Garaci, E., Goldstein, A.L. (eds) Combination Therapies 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2964-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2964-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6289-0

  • Online ISBN: 978-1-4615-2964-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics