Skip to main content

Control Analysis of Metabolic Channeling

  • Chapter
Modern Trends in Biothermokinetics
  • 106 Accesses

Abstract

A growing body of experimental evidence supports the view that many consecutive enzymes in metabolic pathways form aggregates which transfer their common intermediate metabolite(s) directly, without its escape into a bulk phase1. These enzyme-enzyme interactions may be classified in terms of the lifetime of the multienzyme complexes: static channels persist over long periods of time and are destroyed only by processes as drastic as proteolysis; dynamic channels have a short lifetime and dissociate very easily2. Several examples of the former type have been found and in the case of tryptophan synthase, pictures of the multienzyme complex with the channeled intermediate bound in several positions have been reconstructed from X-ray diffraction patterns3. Due to their dissociable nature, channels of the latter type have not been detected in this way; evidence for their existence has therefore been gathered by other methods4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Ovádi, Physiological significance of metabolic channeling. J. Theoret. Biol. 152:1–22 (1991).

    Article  Google Scholar 

  2. P. Friedrich, Dynamic compartmentation in soluble multienzyme systems, in: “Organized Multienzyme Systems. Catalytic Properties,” G.R. Welch, ed., Academic Press, New York, pp. 141–176 (1985).

    Chapter  Google Scholar 

  3. C.C. Hyde, S.A. Ahmed, E.A. Padlan, E.W. Miles and D.R. Davies, 3-Dimensional structure of the tryptophan synthase α-2-β-2 multienzyme complex from Salmonella typhimurium, J. Biol. Chem. 263: 17857–17871 (1988).

    PubMed  CAS  Google Scholar 

  4. T. Keleti, J. Ovádi and J. Batke, Kinetic and physicochemical analysis of enzyme complexes and their possible role in the control of metabolism, Progr. Biophys. Molec. Biol. 53:105–152 (1989).

    Article  CAS  Google Scholar 

  5. D.K. Srivastava and S.A. Bernhard, Mechanism of transfer of reduced nicotinamide adenine-dinucleotide among dehydrogenases, Biochemistry 24:623–628 (1985).

    Article  PubMed  CAS  Google Scholar 

  6. B. Chock and H. Gutfreund, Reexamination of the kinetics of the transfer of NADH between its complexes with glycerol-3-phosphate dehydrogenase and with lactate-dehydrogenase, Proc. Natl. Acad. Sci. U.S.A. 85:8870–8874 (1988).

    Article  PubMed  CAS  Google Scholar 

  7. D.K. Srivastava, P. Smolen, G.F. Betts, T. Fukushima, H.O. Spivey and S.A. Bernhard, Direct transfer of NADH between α-glycerol phosphate dehydrogenase and lactate-dehydrogenase -fact or misinterpretation, Proc. Natl. Acad. Sci. U.S.A. 86:6464–6468 (1989).

    Article  PubMed  CAS  Google Scholar 

  8. X. Wu, H. Gutfreund, S. Lakatos and P.B. Chock, Substrate channeling in glycolysis -a phantom phenomenon, Proc. Natl. Acad. Sci. U.S.A. 88:497–501 (1991).

    Article  PubMed  CAS  Google Scholar 

  9. T. Ushiroyama, T. Fukushima, J.D. Styre and H.O. Spivey, Substrate channelling of NADH in mitochondrial redox processes, Curr. Top. Cell Regul 33:291–307 (1992).

    PubMed  CAS  Google Scholar 

  10. J. Weber and S. Bernhard, Transfer of 1,3-diphosphoglycerate between glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase via an enzyme-substrate-enzyme complex, Biochemistry 21:4189–4194(1982).

    Article  PubMed  CAS  Google Scholar 

  11. J. Kvassman and G. Pettersson, Mechanism of 1,3-bisphosphoglycerate transfer from phosphoglycerate kinase to glyceraldehyde-3-phosphate dehydrogenase, Eur. J. Biochem. 186:265–272 (1989).

    Article  PubMed  CAS  Google Scholar 

  12. D.B. Kell and H.V. Westerhoff, Control analysis of multienzyme systems, UCLA Symp. New Ser. 134:273–289 (1990).

    Google Scholar 

  13. P.A. Srere, Complexes of sequential metabolic enzymes, Ann. Rev. Biochem. 56:89–124 (1987).

    Article  PubMed  CAS  Google Scholar 

  14. D.E. Atkinson, Limitation of metabolite concentrations and the conservation of solvent capacity in the living cell, Curr. Top. Cell. Reg. 1:29–43 (1969).

    CAS  Google Scholar 

  15. J. Keizer and P. Smolen, Mechanisms of metabolite transfer between enzymes: diffusional versus direct transfer, Curr. Top. Cell. Regul. 33:391–405 (1992).

    PubMed  CAS  Google Scholar 

  16. A. Cornish-Bowden, Failure of channeling to maintain low concentrations of metabolic intermediates, Eur. J. Biochem. 195:103–108 (1991).

    Article  PubMed  CAS  Google Scholar 

  17. P. Mendes, D.B. Kell and H.V. Westerhoff, Channelling can decrease pool size, Eur. J. Biochem. 204:257–266 (1992).

    Article  PubMed  CAS  Google Scholar 

  18. P. Mendes, GEPASI: A user oriented metabolic simulator, this volume.

    Google Scholar 

  19. J.-H.S. Hofmeyr, H. Kacser and KJ. Van der Merwe, Metabolic control analysis of moiety-conserved cycles, Eur. J. Biochem. 155:631–641 (1986).

    Article  PubMed  CAS  Google Scholar 

  20. C. Reder, Metabolic control-theory -a structural approach, J. theoret. Biol. 135:175–201 (1988).

    Article  CAS  Google Scholar 

  21. H. Kacser and J.A. Burns, The control of flux, Symp. Soc. Exp. Biol. 27:65–104 (1973).

    PubMed  CAS  Google Scholar 

  22. D.A. Fell and H.M. Sauro, Metabolic control and its analysis -additional relationships between elasticities and control coefficients, Eur. J. Biochem. 148:555–561 (1985).

    Article  PubMed  CAS  Google Scholar 

  23. H.M. Sauro and H. Kacser, Enzyme-enzyme interactions and control analysis .2. The case of nonindependence -heterologous associations, Eur J. Biochem. 187:493– 500 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mendes, P., Kell, D.B. (1993). Control Analysis of Metabolic Channeling. In: Schuster, S., Rigoulet, M., Ouhabi, R., Mazat, JP. (eds) Modern Trends in Biothermokinetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2962-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2962-0_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6288-3

  • Online ISBN: 978-1-4615-2962-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics