Skip to main content

Sum of the Flux Control Coefficients: What is it Equal to in Different Systems?

  • Chapter
Modern Trends in Biothermokinetics

Abstract

Quantitative approaches have led to appreciable advances in understanding the control of cellular metabolism1–3. In the framework of this approach the contribution of any enzyme (E i ) to the control of the flux (J) is characterized by its control coefficient defined in terms of the fractional change ∂J / J in the metabolic flux induced by the fractional change ∂E i / E i in the enzyme concentration:

$$ C_{{{{E}_{i}}}}^{J} = \frac{{\partial J/J}}{{\partial {{E}_{i}}/{{E}_{i}}}} = \frac{{\partial \ln |J|}}{{\partial \ln |{{E}_{i}}}}.{\text{ }} $$
(1)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.V. Westerhoff and K. Van Dam. “Thermodynamics and Control of Biological Free-Energy Transduction,“Elsevier, Amsterdam (1987).

    Google Scholar 

  2. B.N. Kholodenko. “Modern Theory of Metabolic Control,” (in Russian), VINITI PRESS, Moscow (1991).

    Google Scholar 

  3. D.A. Fell, Metabolic control analysis: a survey of its theoretical and experimental development, Biochem. J. 286:313–330 (1992).

    PubMed  CAS  Google Scholar 

  4. H. Kacser and J.A. Burns, The control of flux, Symp. Soc. Exp. Biol. 27:65–104 (1973).

    PubMed  CAS  Google Scholar 

  5. R. Heinrich, S.M. Rapoport and T.A. Rapoport, Metabolic regulation and mathematical models, Prog. Bio phys. Mol. Biol. 32:1–83 (1977).

    CAS  Google Scholar 

  6. H. Kacser, H.M.Sauro and L. Acerenza, Enzyme-enzyme interactions and control analysis. The case of non-additivity: monomer-oligomer associations, Eur. J. Biochem. 187:481–491 (1990).

    Article  PubMed  CAS  Google Scholar 

  7. H.M. Sauro and H. Kacser, Enzyme-enzyme interactions and control analysis. The case of non-independence: heterologous associations, Eur. J. Biochem. 187:493–500 (1990).

    Article  PubMed  CAS  Google Scholar 

  8. J.H. Ottaway, Control points in the citric acid cycle, Biochem. Soc. Trans. 4:371–376 (1976).

    PubMed  CAS  Google Scholar 

  9. C. Reder, Metabolic control theory: a structural approach, J. theor. Biol. 135:175–201 (1988).

    Article  PubMed  CAS  Google Scholar 

  10. D.A. Fell and H.M. Sauro, Metabolic control analysis. The effects of high enzyme concentrations, Eur. J. Biochem. 192:183–187 (1990).

    Article  PubMed  CAS  Google Scholar 

  11. B.N. Kholodenko, A.E. Lyubarev and B.I. Kurganov, Control of metabolic flux in a system with high enzyme concentrations and moiety-conserved cycles, Eur. J. Biochem. 210:147–153 (1992).

    Article  PubMed  CAS  Google Scholar 

  12. A.K. Groen, R.J.A. Wanders, H.V. Westerhoff, R. Van der Meer and J.M. Tager, Quantification of the contribution of various steps to the control of mitochondrial respiration, J. Biol. Chem. 257:2754–2757 (1982).

    PubMed  CAS  Google Scholar 

  13. B.N. Kholodenko, Control theory of “non-classical” enzyme systems and methods for the study of metabolic channelling, Biokhimia 58, in press.

    Google Scholar 

  14. P.A. Srere and J. Ovádi, Enzyme-enzyme interactions and their metabolic role, FEBS Lett. 268:360–364 (1989).

    Article  Google Scholar 

  15. P. Mendes, D.B. Kell and H.V. Westerhoff, Channelling can decrease pool size, Eur. J. Biochem. 204: 257–266 (1992).

    Article  PubMed  CAS  Google Scholar 

  16. H.V. Westerhoff, B.A. Melandri, G. Venturoli, G.F. Azzone and D.B. Kell, A minimal hypothesis for membrane-linked free energy transduction emphasizing the role of the independence of the protonic energy coupling modules, Biochim. Biophys. Acta 768:257–292 (1984).

    Article  PubMed  CAS  Google Scholar 

  17. H.V. Westerhoff and D.B. Kell, A control theoretical analysis of inhibitor titration assays of metabolic channelling, Comtn. Molec. Cellul. Biophys. 5:57–107 (1988).

    CAS  Google Scholar 

  18. B.N. Kholodenko and H.V. Westerhoff, Metabolic channeling and control of the flux, FEBS Lett. 320:71–74 (1993).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kholodenko, B.N., Westerhoff, H.V. (1993). Sum of the Flux Control Coefficients: What is it Equal to in Different Systems?. In: Schuster, S., Rigoulet, M., Ouhabi, R., Mazat, JP. (eds) Modern Trends in Biothermokinetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2962-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2962-0_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6288-3

  • Online ISBN: 978-1-4615-2962-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics