Skip to main content

Mathematical Model of the Creatine Kinase Reaction Coupled to Adenine Nucleotide Translocation and Oxidative Phosphorylation

  • Chapter
Modern Trends in Biothermokinetics
  • 108 Accesses

Abstract

Detailed kinetic analysis of the creatine kinase (CK) reaction catalyzed by soluble enzymes has been given many years ago1–3. However, it has already been known since 1975 that the behavior of CK in mitochondria under conditions of oxidative phosphorylation is not governed by substrate concentration in the medium and soluble enzyme kinetics, but even the direction of the CK reaction may be different depending on the oxidative phosphorylation, which very significantly increases the rate of phosphocreatine production and decreases the rate of the reverse reaction of ATP formation3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.A. Kuby and E.A. Noltmann, Adenosine triphosphate-creatine transphosphorylase, in: “The Enzymes,“Vol. 6, P.D. Boyer, H. Lardy and K. Myrback, eds, Academic Press, New York, p.515 (1962).

    Google Scholar 

  2. J.F. Morrison and E. James, The mechanism of the reaction catalyzed by adenosine triphosphate-creatine phosphotransferase, Biochem. J. 97:37 (1965).

    PubMed  CAS  Google Scholar 

  3. V.A. Saks, G.B. Chernousova, D.E. Gukovsky, V.N. Smirnov and E.I. Chazov, Studies of energy transport in heart cells. Mitochondrial isoenzyme of creatine phosphokinase: kinetic properties and regulatory action of Mg2+ ions, Eur. J. Biochem. 57:213 (1975).

    Article  Google Scholar 

  4. W.E. Jacobus and V.A. Saks, Creatine kinase of heart mitochondria: changes in its kinetic properties induced by coupling to oxidative phosphorylation, Arch. Biochem. Biophys. 219:167 (1982).

    Article  PubMed  CAS  Google Scholar 

  5. V.A. Saks, V.V. Kupriyanov, G.V. Elizarova and W.E. Jacobus, Studies of energy transport in heart cells. The importance of creatine kinase localization for the coupling of mitochondrial phosphorylcreatine production to oxidative phosphorylation, J. Biol. Chem. 255:755 (1980).

    PubMed  CAS  Google Scholar 

  6. V.A. Saks, A.V. Kuznetsov, V.V. Kupriyanov, M.V. Miceli and W.E. Jacobus, Creatine kinase of rat heart mitochondria. The demonstration of functional coupling to oxidative phosphorylation in an inner membrane-matrix preparation, J.Biol. Chem. 260:7757 (1985).

    PubMed  CAS  Google Scholar 

  7. R.W. Moreadith and W.E. Jacobus, Creatine kinase of heart mitochondria. Functional coupling of ADP transfer to the adenosine nucleotide translocase, J. Biol. Chem. 257:899 (1982).

    PubMed  CAS  Google Scholar 

  8. R.L. Barbour, J. Ribaudo and S.H.P. Chan, Effect of creatine kinase activity on mitochondrial ADP/ATP transport. Evidence for a functional interaction. J.Biol. Chem. 259:8246 (1984).

    PubMed  CAS  Google Scholar 

  9. S.P. Bessman and P.J. Geiger, Transport of energy in muscle: the phosphocreatine shuttle, Science 211:448 (1981).

    Article  PubMed  CAS  Google Scholar 

  10. T. Walliman, M. Wyss, D. Brdiczka, K. Nicolay and H.M. Eppenberger, Intracellular compartmentatíon,structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the “phosphocreatine circuit” for cellular energy homeostasis, Biochem. J. 281:21 (1992).

    Google Scholar 

  11. M. Muller, R. Moser, D. Cheneval and E. Carafoli, Cardiolipin is the membrane receptor for mitochon-drial creatine phosphokinase, J. Biol. Chem. 260:3839 (1985).

    PubMed  CAS  Google Scholar 

  12. V.A. Saks, Z.A. Khuchua and A.V. Kuznetsov, Specific inhibition of ATP-ADP translocase in cardiac mitoplasts by antibodies against mitochondrial creatine kinase, Biochim. Biophys. Ada 891:138 (1987).

    Article  CAS  Google Scholar 

  13. V.A. Saks, N.V. Lipina, V.N. Smirnov and E.I. Chazov, Studies of energy transport in heart cells. The functional coupling between mitochondrial creatine phosphokinase and ATP-ADP translocase: kinetic evidence. Arch. Biochem. Biophys. 173:34 (1976).

    Article  PubMed  CAS  Google Scholar 

  14. E.J. Davis and L. Lumeng, Relationships between the phosphorylation potentials generated by liver mitochondria and respiratory state under conditions of adenosine diphosphate control. J. Biol. Chem. 250:2275 (1975).

    CAS  Google Scholar 

  15. P.V. Vignais, G. Brandolin, F. Boulay, P. Dalbon, M.R. Block and I. Gauche, Recent developments in the study of the conformational states and the nucleotide binding sites in the ADP/ATP carrier, in: “Anion Carriers of Mitochondrial Membranes,” A. Azzi, K.A. Nalecz, M.J. Nalecz and L. Wojtczak, eds, Springer, Berlin, p. 133 (1989).

    Chapter  Google Scholar 

  16. W.W. Cleland, Enzyme kinetics, Ann. Rev. Biochem. 36:77 (1967).

    Article  PubMed  CAS  Google Scholar 

  17. G.L. Kenyon and G.H. Reed, Creatine kinase: structure-activity relationships, Adv. Enzymol. 54:367 (1983).

    PubMed  CAS  Google Scholar 

  18. P.D. Boyer, L. de Meis, M.G.C. Carvalho and D.D. Hackney, Dynamic reversal of enzyme carboxyl group phosphorylation as the basis of the oxygen exchange catalysed by sarcoplasmic reticulum adenosine triphosphatase, Biochemistry 16:136 (1977).

    Article  PubMed  CAS  Google Scholar 

  19. M.K. Aliev and V.A. Saks, Quantitative analysis of “phosphocreatine shuttle”. I. A probability approach to the description of phosphocreatine production in the coupled creatine kinase-ATP/ADP translocase-oxidative phosphorylation reactions in heart mitochondria. Biochim. Biophys. Acta (Bioenergetics) ,submitted.

    Google Scholar 

  20. A.V. Kuznetsov and V.A. Saks, Affinity modification of creatine kinase and ATP-ADP translocase in heart mitochondria: determination of their molar stoichiometry, Biochem. Biophys. Res. Commun. 134:359 (1986).

    Article  PubMed  CAS  Google Scholar 

  21. F.N. Gellerich, M. Schlame, R. Bohnensack and W. Kunz, Dynamic compartmentation of adenine nucleotides in the mitochondrial intermembrane space of rat-heart mitochondria, Biochim. Biophys. Acta 890:117 (1987).

    Article  PubMed  CAS  Google Scholar 

  22. A.V. Kuznetsov, Z.A. Khuchua, E.V. Vassil’eva, N.V. Medvedeva and V.A. Saks, Heart mitochondrial creatine kinase revisited: the outer mitochondrial membrane is not important for coupling of phosphocreatine production to oxidative phosphorylation, Arch. Biochem. Biophys. 268:176 (1989).

    Article  PubMed  CAS  Google Scholar 

  23. J. Schlegel, B. Zurbriggen, G. Wegmann, M. Wyss, H.M. Eppenberger and T. Wallimann, Native mitochondrial creatine kinase forms octameric structures. I. Isolation of two interconvertible mitochondrial creatine kinase forms, dimeric and octameric mitochondrial creatine kinase: characterization, localization, and structure-function relationships. J. Biol. Chem. 263:16942 (1988).

    PubMed  CAS  Google Scholar 

  24. T. Schnyder, A. Engel, A. Lustig and T. Wallimann, Native mitochondrial creatine kinase forms octameric structures. II. Characterization of dimers and octamers by ultracentrifugation, direct mass measurements by scanning transmission electron microscopy, and image analysis of single mitochondrial creatine kinase octamers. J. Biol. Chem. 263:16954 (1988).

    PubMed  CAS  Google Scholar 

  25. V. Adams, W. Bosch, J. Schlegel, T. Wallimann and D. Brdiczka, Further characterization of contact sites from mitochondria of different tissues: topology of peripheral kinases, Biochim. Biophys. Ada 981:213 (1989).

    Article  CAS  Google Scholar 

  26. J. Schlegel, M. Wyss, H.M. Eppenberger and T. Wallimann, Functional studies with the octameric and dimeric form of mitochondrial creatine kinase. Differential pH-dependent association of the two oligomeric forms with the inner mitochondrial membrane, J. Biol. Chem. 265:9221 (1990).

    PubMed  CAS  Google Scholar 

  27. V.A. Saks, Y.O. Belikova and A.V. Kuznetsov, In vivo regulation of mitochondrial respiration in cardiomyocytes: specific restrictions for intracellular diffusion of ADP, Biochim. Biophys. Ada 1074:302 (1991).

    Article  CAS  Google Scholar 

  28. V.A. Saks, Y.O. Belikova, A.V. Kuznetsov, Z.A. Khuchua, T.H. Branishte, M.L. Semenovsky and V.G.Naumov, Phosphocreatine pathway for energy transport: ADP diffusion and cardiomyopathy, Am. J. Physiol. Suppl. 261:30 (1991).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aliev, M.K., Saks, V.A. (1993). Mathematical Model of the Creatine Kinase Reaction Coupled to Adenine Nucleotide Translocation and Oxidative Phosphorylation. In: Schuster, S., Rigoulet, M., Ouhabi, R., Mazat, JP. (eds) Modern Trends in Biothermokinetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2962-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2962-0_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6288-3

  • Online ISBN: 978-1-4615-2962-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics