Skip to main content

Dynamical Symmetry and String Theory

  • Chapter
Symmetries in Science VII
  • 191 Accesses

Abstract

Dynamical symmetries and spectrum genererating algebras have found applications in many branches of physics. Franco Iachello has championed their applications in Nuclear Physics and has explored several other areas of physics by using ingenious schemes. One of the most effective methods for constructing solvable models of string theory can be viewed in the same light. The so called coset method for affine (KacMoody) algebras is, in fact, a “dynamical symmetry” in the spirit of Iachello’s work. After describing the method, I show how to use it to construct models of strings propagating in curved spacetime. Furthermore, as is known from Iachello’s work in Nuclear Physics, there is a relation between the geometry of the nucleus and the dynamical symmetry chain. Similarly in string theory there is an explicit relation between the geometry of spacetime and the algebraic coset chain, as I describe in this paper.

Research supported by DOE grant DE-FG03-84ER-40168

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Iachello and Arima,; see also articles in this volume.

    Google Scholar 

  2. F. Iachello, Phys. Rev. Lett.;

    Google Scholar 

  3. A. B. Balantekin, I. Bars and F. Iachello.

    Google Scholar 

  4. K. Bardakci and M.B. Halpern, Phys. Rev. D3 (1971) 2493;;

    MathSciNet  ADS  Google Scholar 

  5. P. Goddard, A. Kent and D. Olive, Phys. Lett. 152B (1985) 88.

    MathSciNet  ADS  Google Scholar 

  6. I. Bars and D. Nemeschansky, Nucl. Phys. B348 (1991) 89.

    Article  MathSciNet  ADS  Google Scholar 

  7. I. Bars,“Curved Spacetime Strings and Black Holes”, in Proc. XX th Int. Conf. on Diff. Geometrical Methods in Physics, eds. S. Catto and A. Rocha, Vol. 2, p. 695, (World Scientific, 1992).

    Google Scholar 

  8. P. Ginsparg and F. Quevedo, Nucl. Phys. B385 (1992) 527.

    Article  MathSciNet  ADS  Google Scholar 

  9. E. Witten, Phys. Rev. D44 (1991) 314.

    MathSciNet  ADS  Google Scholar 

  10. V.G. Kac, Func. Anal. App. 1 (1967) 238;;

    Google Scholar 

  11. R.V. Moody, Bull. Am. Math. Soc. 73 (1967) 217.

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Witten, Comm. Math. Phys. 92 (1984) 455.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. I. Bars, in Vertex Operators in Math and Physics,Eds. Lepowsky, Mandelstasn, Singer, (Springer Verlag NY, 1985), page 373.

    Chapter  Google Scholar 

  14. E. Witten, Nucl. Phys. B223 (1983)422;;

    Article  MathSciNet  ADS  Google Scholar 

  15. K. Bardakci, E. Rabinovici and B.Säring, Nucl. Phys. B299 (1988) 157;;

    ADS  Google Scholar 

  16. K. Gawedzki and A. Kupiainen, Phys. Lett. 215B (1988) 119;

    MathSciNet  ADS  Google Scholar 

  17. K. Gawedzki and A. Kupiainen, Nucl. Phys. B320 (1989) 625.

    Article  MathSciNet  ADS  Google Scholar 

  18. I. Bars and K. Sfetsos, Mod. Phys. Lett. A7 (1992) 1091.

    MathSciNet  ADS  Google Scholar 

  19. M. Crescimanno, Mod. Phys. Lett. A7 (1992) 489;;

    MathSciNet  ADS  Google Scholar 

  20. J. B. Home and G. T. Horowitz, Nucl. Phys. B368 (1992) 444;;

    ADS  Google Scholar 

  21. E. S. Fradkin and V. Ya. Linetsky, Phys. Lett. 277B (1992) 73;;

    MathSciNet  ADS  Google Scholar 

  22. P. Horava, Phys. Lett. 278B (1992) 101;;

    MathSciNet  ADS  Google Scholar 

  23. E. Raiten, “Perturbations of a Stringy Black Hole”, Fermilab-Pub 91–338-T;;

    Google Scholar 

  24. D. Gershon, “Exact Solutions of Four-Dimensional Black Holes in String Theory”, TAUP-1937–91.

    Google Scholar 

  25. I. Bars and K. Sfetsos, Phys. Lett. 277B (1992) 269.

    MathSciNet  ADS  Google Scholar 

  26. I. Bars, Phys. Lett 293B (1992) 315.

    MathSciNet  ADS  Google Scholar 

  27. I. Bars, “Superstrings on Curved Spacetimes”, USC-92/HEP-B5 (hep-th 9210079).

    Google Scholar 

  28. I. Bars and K. Sfetsos, Phys. Rev. D46 (1992) 4495.

    MathSciNet  ADS  Google Scholar 

  29. I. Bars and K. Sfetsos, Phys. Rev. D46 (1992) 4510.

    MathSciNet  ADS  Google Scholar 

  30. K. Sfetsos, “Conformally Exact Results for SL(2, IR) ⊗ SO(1, 1)d -2/S0(1,1) Coset Models”, USC-92/HEP-S1 (hep-th/9206048), to appear in Nucl. Phys.

    Google Scholar 

  31. I. Bars and K. Sfetsos SL(2, IR) × SU(2)/R 2 String Model in Curved Spacetime and Exact Conformal Results”, USC-92/HEP-B3 (hep-th/ 9208001), to appear in Phys. Lett.

    Google Scholar 

  32. R. Dijgraaf, E. Verlinde and H. Verlinde, Nucl. Phys. B371 (1992) 269.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bars, I. (1994). Dynamical Symmetry and String Theory. In: Gruber, B., Otsuka, T. (eds) Symmetries in Science VII. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2956-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2956-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6285-2

  • Online ISBN: 978-1-4615-2956-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics