Skip to main content

Femtosecond Probing of Photoinduced Refractive Index Changes in Semiconductors

  • Chapter
Ultrashort Processes in Condensed Matter

Part of the book series: NATO ASI Series ((NSSB,volume 314))

Abstract

For decades, Information technology has been dominated by electronics. Increasingly, however, the physical limitations of electronics are being or have been reached and scientists are exploring new technologies for transmitting, storing and processing information. Many believe that light or photons will form the new “current” for information in the next century and that photonics could possibly supplant electronics in several devices. Certainly photonics is now making significant inroads in areas such as transmission and storage. However, the same can’t be said of routing and switching, since such functions are still carried out using all electronic or hybrid, opto-electronic technologies. Increasing demands for integration call for all-optical switching devices and it has become the “holy grail” of the emerging optical communication technologies to find suitable materials which display a large enough and fast enough optical response to be considered for such devices. The underlying physical mechanism which is being researched in many of these quests is photo-induced refractive index changes [Shen, 1984; Gibbs,1985]. It is envisioned that a gate optical pulse can be used to alter the local refractive index in a device and thus modify the direction of propagation, phase, or transmission of an optical pulse passing through the device in what is commonly referred to as light-by-light switching. Many different types of materials have been and continue to be investigated for these applications including semiconductors, glasses, semiconductor-doped glasses, and polymers [Miller, 1981; Stegeman, 1985; Haug, 1988; Gibbs, 1990]. Also, several different geometries have been researched for switching applications based on Fabry-Perot interferometers, etalons, waveguides, diffraction, and scattering [Stegeman, 1985].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auston, D.H., McAfee, S., Shank, C.V., Ippen, E.P., Teschke, O., 1978, Picosecond spectroscopy of semiconductors, Solid State Electron. 21:147.

    Article  Google Scholar 

  • Anderson, K.K., Lagasse, M.J., Wang, CA, Fujimoto, J.G., Haus, H.A., 1990, Femtosecond dynamics of the nonlinear index near the band edge in AIGaAs waveguides, Appl. Phys. Lett. 56:1834.

    Article  Google Scholar 

  • Chandresekhar, S., 1950, “Radiative Transfer,” Dover, New York.

    Google Scholar 

  • Combescot, M., 1979, Hydrodynamics of an electron-hole plasma created by a pulse, Solid State Commun. 30:81.

    Article  Google Scholar 

  • Cornet, A., Pugnet, M., Collet, J., Amand, T, Brousseau, M., 1981, Spatial expansion of hot electron-hole plasma at high density in CdSe, J. de Phys. C7:471.

    Google Scholar 

  • Cotter, D., Ironside, C.N., Ainslie, B.J., Girdlestone, H.P., 1989, Picosecond pump-probe interferometric measurement of optical nonlinearity in semiconductor-doped fibers, Opt. Lett. 14:317.

    Article  Google Scholar 

  • Ding, Y.J., Guo, C.L. Swartzlander, G.A., Jr., Khurghin, J.B., Kaplan, A.E., 1990, Spectral measurement of the nonlinear refractive index in ZnSe using self-bending of a pulsed laser beam, Opt. Lett. 15:1431.

    Article  Google Scholar 

  • Dneprovskii, V.S., Klimov, V.I., Novikov, M.G., 1988, Recombination dynamics of an electron-hole plasma in cadmium sulfide, Sov. Phys. Solid State 30:1694.

    Google Scholar 

  • Dneprovskii, V.S., Efros, A.L., Ekimov, AI., Klimov, V.I., Kudriaystev, I.A., Novikov, M.G., 1990, Spontaneous and stimulated collapse of high density electron-hole system in CdSe, Solid State Commun. 74:555.

    Article  Google Scholar 

  • Downer, M.C. and Shank, C.V., 1986, Ultrafast beating of silicon sapphire by femtosecond optical pulses, Phys. Rev. Lett. 56:761.

    Article  Google Scholar 

  • Dubard, J., Oudar, J.L., Alexandre, F., Hulin, D., Orszag, A., 1987, Ultrafast absorption recovery due to stimulated emission in GaAs/A1GaAs Multiple quantum wells, Appl. Phys. Lett. 50:821.

    Article  Google Scholar 

  • Dumke, W.P., 1957, Spontaneous radiative recombination in semiconductors, Phys. Rev. 105:139.

    Article  Google Scholar 

  • Eichler, H.J., Gunter, P., Pohl, E.W., 1986, “Laser Induced Dynamic Gratings,” Springer-Verlag.

    Google Scholar 

  • Epifanov, M.S., Galkin, G.N., Bobrova, E.A., Vavilov, V.S., Sabanova, L.D., 1976, Photon transfer of excitation of nonequilibrium carriers in gallium arsenide, Fiz. & Tekh. Poluprovodn. 10:889 (Soy. Phys. Semicond. 10:526).

    Google Scholar 

  • Fork, R. L., Greene, B.I., Shank, C.V., 1981, Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking, Appl. Phys. Lett. 38:671.

    Article  Google Scholar 

  • Fox, A. M., Manning, R.J., Miller, A., 1989, Picosecond relaxation mechanisms in highly excited GalnAsP, J. Appl. Phys. 65:4287.

    Article  Google Scholar 

  • Fox, E.C., Canto-Said, E.J., van Driel, H.M., 1991, Femtosecond time-resolved refractive index changes in СdS0.75Se0.25 and CdS, Appl. Phys. Lett. 59:1878.

    Article  Google Scholar 

  • Fox, E.C., Canto-Said, E.J., van Driel, H.M., 1992a, Separation of bound and free carrier contributions to the refractive index change induced in II-Vi semiconductors by femtosecond pulses, Semicond. Sci. Technol. 7 В183.

    Article  Google Scholar 

  • Fox, E.C., Canto-Said, E.J., van Driel, H.M., 1992b, Femtosecond time-resolved refractive index changes in CdSSe, SPIE meeting on “Ultrafast Phenomena in Semiconductors and Superconductors,” Sommerset, N.J., U.S.A.

    Google Scholar 

  • Fox, E.C. and van Driel, H.M., 1992c, Ultrafast carrier recombination and plasma expansion via stimulated emission in II-VI semiconductors, Phys. Rev. В,in press.

    Google Scholar 

  • Friberg, S.W. and Smith, P.W., 1987, Nonlinear optical glasses for ultrafast optical switches, I.E.E.E. J. Quantum Electron, QE-23:2089.

    Article  Google Scholar 

  • Gibbs, H.M., 1985, “Optical Bistability: Controlling Light with Light,” Academic Press, New York.

    Google Scholar 

  • Gibbs, H.M., Khitrova, G., Peyghambarian, N., 1990, “Nonlinear Photonics,” Springer Verlag, Berlin.

    Book  Google Scholar 

  • Goebel, E.O., Hildebrand, O., Lohnert, K., 1977, Wavelength dependence of gain saturation in GaAs lasers, I.E.E.E. J. Quantum Electron. QE-13:848.

    Article  Google Scholar 

  • Haug, H., 1988, “Optical Nonlinearities and Instabilities in Semiconductors,” Academic Press, San Diego.

    Google Scholar 

  • Johnson, E.J., 1967, in “Semiconductors and Semimetals,” vol. 3, ed. Willardson, R.K. and Beer, A.C., Academic Press, London.

    Google Scholar 

  • Junnarkar, M.R. and Alfano, R.R., 1986, Photogenerated high-density electron-hole plasma energy relaxation and experimental evidence for rapid expansion of the electron-hole plasma in CdSe, Phys. Rev. В 34:7045.

    Google Scholar 

  • Kalafati, Y. D. and Kokin, V.A., 1991, Picosecond relaxation processes in a semiconductor laser excited by a powerful ultrashort light pulse, Soy. Phys. J.E.T.P. 72:1003.

    Google Scholar 

  • Kobayashi, A., Sankey, O.F., Volz, S.M., Dow, J.M., 1983, Semiempirical tight-binding band structures of wurtzite semiconductors: AIN, CdS, CdSe, ZnS, and ZnO, Phys. Rev. В 28:935.

    Google Scholar 

  • Kocevar, P., 1985, Hot phonon dynamics, Physica 134 B+?:155.

    Google Scholar 

  • Kressel, H. and Butler, J.K., 1977, “Semiconductor Lasers and Heterojunctions,” Academic Press, New York.

    Google Scholar 

  • LaGasse, M.J., Anderson, K.K., Haus, H.A., Fujimoto, J.G., 1989, Femtosecond all-optical switching in AlGaAs waveguides using a time division interferometer, Appl. Phys. Lett. 54:2068.

    Article  Google Scholar 

  • Landot and Börnstein, 1982, “Numerical Data and Functional Relationships in Science and Technology, New Series,” vol. 17 & 22, springer-Veriag.

    Google Scholar 

  • Majumder, F.A., Swoboda, H.-E., Kempf, K, Klingshirn, C., 1985, Electron-hole plasma expansion in the direct-band-gap semiconductors CdS and CdSe, Phys. Rev. В 32:2407.

    Google Scholar 

  • Miller, A., Miller, D.A.B., Smith, S. D., 1981, Dynamic non-linear optical processes in semiconductors, Adv. in Physics 30:697.

    Article  Google Scholar 

  • Pötz, W. and Kocevar, P., 1983, Cooling of highly photoexcited electron-hole plasma in polar semiconductors and semiconductor quantum wells: a balance-equation approach, Phys. Rev. В 82:7040.

    Google Scholar 

  • Puls, J., Rudolph, W., Henneberger, F., Lap, D., 1988, Femtosecond studies of room temperature optical nonlinearities in wide-gap II-VI semiconductors, Phys. Stat. Sol. (b) 150:419.

    Article  Google Scholar 

  • Pugnet, M., Collet, J., Cornet, A., 1981, Cooling of hot electron-hole plasmas in the presence screened electron-phonon interactions, Solid State Commun. 38:531.

    Article  Google Scholar 

  • Rinker, M., Swoboda, H.-E, Majumder, F.A., Khngshirn, C., 1989, Diffusive and thermal properities of the electron-hole plasma in CdS and CdSe, Solid State Commas. 69:887.

    Article  Google Scholar 

  • Rolland, C. and Corkum, P.B., 1986, Amplification of 70 fs pulses in a high repetition rate XeCI pumped dye laser amplifier, Opt. Commas,59:64.

    Article  Google Scholar 

  • Rudolph, W., Puls, J., Henneberger, F., Lap, D., 1990, Femtosecond studies of transient nonlinearites in wide-gap II-VI semiconductor compounds, Phys. Stat. Sol. (b) 159:49.

    Article  Google Scholar 

  • Said, A.A., Sheik-Bahae, M., Hagan, D.J., Wei, T.H., Wang, J., Young, J, Van Stryland, E.W., 1992, Determination of bound and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZuTe, J. Opt. Soc. Am. В 9:405.

    Article  Google Scholar 

  • Saito, H. and Göbel, E.O., 1985, Picosecond spectroscopy of highly excited Cds, Phys. Rev. B 31:2360.

    Article  Google Scholar 

  • Seeger, K., 1982, “Semiconductor Physics, an Introduction,” Springer Verlag, Berlin.

    Google Scholar 

  • Shah, J., 1989, Photoexcited hot carriers: from CW to 6 fs in 20 years, Solid State Electron. 32:1051.

    Article  Google Scholar 

  • Shank, C.V., Aaston, D.H, Ippen, E.P., Teschke, O., 1978, Picosecond time resolved reflectivity of direct gap semiconductors, Solid State Commun. 26:567.

    Article  Google Scholar 

  • Sheik-Bahae, M., Said, A.A., Van Stryland, E.W., 1989, High-sensitivity, single-beam n2 measurements, Opt. Lett, 14:955.

    Article  Google Scholar 

  • Sheik-bahae, M., Hutchings, D.C., Hagan, D.J., Van Stryland, E.W., 1991, Dispersion of bound electronic nonlinear refraction in solids, I.E.E.E. J. Quantum Electron. QE-27:1296.

    Article  Google Scholar 

  • Shen, Y.R., 1984, “Principles of Nonlinear Optics,” John Wiley & Sons, Toronto.

    Google Scholar 

  • Solymar, L. and Cooke, DJ., 1981, “Volume Holography and Volume Gratings,” Academic Press, New York.

    Google Scholar 

  • Stegeman, G.I. and Stolen, R.H., 1988, “Nonlinear Guided Wave Phenomena,” special issue of J. Opt. Soc. Am. B 5:264–574.

    Article  Google Scholar 

  • Tsarenkov, G.V., 1979, Drift of recombination in a variable gap semiconductor, Soy. Phys. Semicond,13:641.

    Google Scholar 

  • Valdmanis, J.A., Fork, R.L., Gordon, J.P., 1985, Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation group velocity dispersion, saturable absorption, and saturable gain, Opt. Lett. 10:131.

    Article  Google Scholar 

  • van Dricl, H.M., 1979, Influence of hot phonons on energy relaxation of high-density carriers in germanium, Phys. Rev. В 19:5928.

    Google Scholar 

  • van Driel, H.M., 1987, kinetics of high-density plasma generated in Si by 1.06- and 0.53-mm picosecond laser pulses, Phys. Rev. В 35:8166.

    Google Scholar 

  • van Lap, D., Peschel, U., Ponath, H.E., Rudolph, W., 1991, Investigation of carrier temperature relaxation with femtosecond transient grating experiments in CdSxSe1-x semiconductors, Inst. Phys. Conf. Ser. No. 126: Section V, 357, presented at Int. Symp. on Ultrafast Processes in Spectroscopy, Bayreuth.

    Google Scholar 

  • Van Strylaпd, E.W., Vanherzecle, H., Woodall, M.A., Soileau, M.J., Smirl, A.L., Guha, S., Boggess, T.F., 1985, Two photon absorption, nonlinear refraction, and optical limiting in semiconductors, Opt. Eng. 24:613.

    Google Scholar 

  • Vasconcellos, A. and Luzzi, R., 1980, Coupled electron-hole plasma-phonon system in far-from-equilibrium semiconductors, Phys. Rev, B. 22:6355.

    Article  Google Scholar 

  • Wherrett, B.S., 1988, Nonlinear Refraction for CW Optical Bistability in “Optical Nonlinearities and Instabilities in Semiconductors,” ed. Haug, H., Academic Press, San Diego.

    Google Scholar 

  • Wherrett, B.S., Darzi, A.K., Chow, Y.T., McGuckin, A.T., Van Stryland, E.W., 1990, Ultrafast thermal refractive nonlinearities in bistable interference filters, J. Opt. Soc. B 7:215.

    Article  Google Scholar 

  • Zimmermann, R., 1988, Nonlinear optics and the Mott transition in semiconductors, Phys. Stat. Sol. (b) 146:371.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fox, E.C., van Driel, H.M. (1993). Femtosecond Probing of Photoinduced Refractive Index Changes in Semiconductors. In: Bron, W.E. (eds) Ultrashort Processes in Condensed Matter. NATO ASI Series, vol 314. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2954-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2954-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6284-5

  • Online ISBN: 978-1-4615-2954-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics