Skip to main content

Calcium Kinetic and Mechanical Regulation of the Cardiac Muscle

  • Chapter
Interactive Phenomena in the Cardiac System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 346))

Abstract

A comprehensive dynamic model of the excitation contraction coupling, developed for a single cardiac muscle, is extended to a multi-cell system (duplex). The model defines the mechanical activation level based on calcium kinetics and crossbridge cycling and emphasizes the central role of the troponin regulatory proteins in regulating muscle activity. The intracellular control mechanism includes two feedback loops that affect the affinity of troponin for calcium and the crossbridge cycling. The model is used to simulate the basic mechanical characteristics of the cardiac muscle, i. e. the force-length and the force-velocity relationships, and describes their dependence on the mechanical activation level. The two-cell duplex unit is used to study the influence of inter-cellular interactions and the effect of inhomogeneity on muscle performance, due to non-uniformity in the electrical stimulation or inhomogeneity in calcium kinetics. Better understanding of the performance of the inhomogeneous muscle is obtained due to our ability to describe the control of the activation level in each cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beyar R, Sideman S. A computer study of the left ventricular performance based on fiber structure, sarcomere dynamics, and transmural electrical propagation velocity. Circ Res 1984; 55: 358–375.

    Article  PubMed  CAS  Google Scholar 

  2. Pietrabissa R, Montevecchi FM, Fumero R. Mechanical characterization of a model of a multicomponent cardiac fiber. J Biomed Eng 1991; 13: 407–414.

    Article  PubMed  CAS  Google Scholar 

  3. Wong ALK. Mechanics of cardiac muscle, based on Huxley’s model: mathematical simulation of isometric contraction. J Biomechanics 1971; 4: 529–540.

    Article  CAS  Google Scholar 

  4. Ford EL. Mechanical manifestations of activation in cardiac muscle. Circ Res 1991; 68: 621–637.

    Article  PubMed  CAS  Google Scholar 

  5. Zahalak IG, Shi-ping MA. Muscle activation and contraction: constitutive relations based directly on crossbridge kinetics. J Biomechan Eng 1990; 112: 52–62.

    Article  CAS  Google Scholar 

  6. Beyar R, Sideman S. Atrioventricular interaction: a computer study. Am J Physiol 1987; 252: H653–H665.

    PubMed  CAS  Google Scholar 

  7. Huxley AF. Muscle structure and theories of contraction. Prog Biophys Biophys Chem 1957; 7: 255–318.

    PubMed  CAS  Google Scholar 

  8. Eisenberg E, Hill TL. Muscle contraction and free energy transduction in biological system. Science 1985; 227: 999–1006.

    Article  PubMed  CAS  Google Scholar 

  9. Landesberg A, Sideman S. Coupling calcium binding to Troponin-C and crossbridge cycling kinetics in skinned cardiac cells. Am J Physiol 1992; submitted.

    Google Scholar 

  10. Hofmann PA, Fuchs F. Effect of length and crossbridge attachment on Ca2+ binding to cardiac troponin-C. Am J Physiol 1987; 253: C90–C96.

    PubMed  CAS  Google Scholar 

  11. Hofmann PA, Fuchs F. Evidence for force-dependent component of calcium binding to cardiac troponin-C. Am J Physiol 1987; 253: C541–0546.

    PubMed  CAS  Google Scholar 

  12. Kentish JC, ter Keurs HED, Noble MIM, Ricciardi L. The relationship between force, calcium and sarcomere length in skinned trabeculae from rat ventricle. J Physiol 1983; 345: 24P.

    Google Scholar 

  13. Hibberd MG, Jewell BR. Calcium and length-dependent force production in rat ventricular muscle. J Physiol 1982; 329: 527–540.

    PubMed  CAS  Google Scholar 

  14. Brenner B, Eisenberg E. The mechanism of muscle contraction. Biochemical, mechanical, and structural approaches to elucidate crossbridge action in muscle. Basic Res Cardiol 1987; 82(Suppl. 2): 2–16.

    Google Scholar 

  15. Brenner B, Eisenberg E. Rate of force generation in muscle: correlation with actomyosin Atpase activity in solution. Proc Nall Acad Sci 1986; 83: 3542–3546.

    Article  CAS  Google Scholar 

  16. Chalovich JM, Eisenberg E. The effect of troponin - tropomyosin on the binding of heavy meromyosin to actin in the presence of ATP. J Biol Chem 1986; 261: 5088–5093.

    PubMed  CAS  Google Scholar 

  17. Grabarek Z, Grabarek J, Leavis PJ, Gergely J. Cooperative binding to Ca - specific sites of troponin C in regulated actin and actomyosin. J Biol Chem 1983; 258: 14098–14102.

    PubMed  CAS  Google Scholar 

  18. Greene LE, Eisenberg E. Relationship between regulated actomyosin ATPase activity and cooperative binding of myosin to regulated actin. Cell Biophys 1988; 12: 59–71.

    PubMed  CAS  Google Scholar 

  19. Guth K, Potter JD. Effect of rigor and cycling crossbridges on the structure of troponin-C and on the Ca2+ affinity of the Ca2+-specific regulatory sites in skinned rabbit spoas fibers. J Biol Chem 1987; 262: 15883–15890.

    Google Scholar 

  20. Williams DL, Greene LE, Eisenberg E. Cooperative turning on of myosin subfragment-1 ATPase activity by the troponin-tropomyosin-actin complex. Biochemistry 1988; 27: 6987–6993.

    Article  PubMed  CAS  Google Scholar 

  21. Stephenson DG, Stewart AW, Wilson GJ. Dissociation of force from myofibrillar MgATPase and stiffness at short sarcomere length in rat and toad skeletal muscle. J Physiol 1989; 410: 351–366.

    PubMed  CAS  Google Scholar 

  22. Brenner B. Rapid dissociation and reassociation of actomyosin crossbridge during force generation: A newly observed facet of crossbridges action in muscle. Proc Natl Acad Sci 1991; 88: 10490–10494.

    Article  PubMed  CAS  Google Scholar 

  23. Lee JA, Allen DG. EMD 53998 Sensitizes the contractile proteins to calcium in intact ferret ventricular muscle. Circ Res 1991; 69: 927–936.

    Article  PubMed  CAS  Google Scholar 

  24. Allen DG, Smith GL. The first calcium transient following shortening in isolated ferret ventricular muscle. J Physiol 1985; 366: 83P.

    Google Scholar 

  25. Allen DG, Kurihara S. The effect of muscle length on intracellular calcium transient in mammalian cardiac muscle. J Physiol 1981; 327: 79–94.

    Google Scholar 

  26. Allen DG, Kentish JC. The cellular basis of the length-tension regulation in cardiac muscle. J Mol and Cellular Biol 1985; 17: 821–840.

    CAS  Google Scholar 

  27. Braunwald E. Heart Disease, A Textbook of Cardiovascular Medicine, third, edition. 1988; pp 394–401.

    Google Scholar 

  28. ter Keurs HEDJ, de Tombe PP. The velocity of sarcomere shortening in mammalian myocardium (abstract). The 10th Int Conf Cardiovasc System Dynamics Soc, Japan, September 1992.

    Google Scholar 

  29. Brutsaert DL, Sys SU, Rademakers FE. Triple control of relaxation: implications in cardiac disease. Circulation 1984; 69: 190–196.

    Article  PubMed  CAS  Google Scholar 

  30. Lab MJ, Allen DG, Orchard CH. The effect of shortening on myoplasmic calcium concentration and on action potential in mammalian ventricular muscle. Circ Res 1984; 55: 825–829.

    Article  PubMed  CAS  Google Scholar 

  31. Blink JR, Endo M. Modification of myofibrillar responsiveness to Ca++as an inotropic mechanism. Circulation 1986; 73: suppl-III, 85–98.

    Google Scholar 

  32. Blanchard EM, Solaro J. Inhibition of the activation and troponin calcium binding of dog cardiac myofibrils by acid pH. Circ Res 1984; 55: 382–391.

    Article  PubMed  CAS  Google Scholar 

  33. Wiegner AW, Allen GJ, Bing OHL. Weak and strong myocardium in series: implications for segmental dysfunction. Am J Physiol 1978; 4(6): H776–H783.

    Google Scholar 

  34. Zahalak IG. Modeling muscle mechanics (and energetics). In: Multiple Muscle System: Biomechanics and Movement Organization, Winters JM and Woo SLY (eds). Springer-Verlag: NY. 1990, pp 1–23.

    Google Scholar 

  35. Zahalak IG. A distribution-moment approximation for kinetic theories of muscle contraction. Mathematical Biosience, kinetics. Mathematical Biosience 1981; 55: 89–114.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Landesberg, A., Sideman, S. (1993). Calcium Kinetic and Mechanical Regulation of the Cardiac Muscle. In: Sideman, S., Beyar, R. (eds) Interactive Phenomena in the Cardiac System. Advances in Experimental Medicine and Biology, vol 346. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2946-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2946-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6280-7

  • Online ISBN: 978-1-4615-2946-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics