Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 346))

  • 155 Accesses

Abstract

Inotropic alterations may alter contractile efficiency. Positive inotropic agents act mainly, if not exclusively, by increasing activation, which has very little effect on contractile efficiency. The metabolic effects of hypoxia may depress the contractile machinery directly. Acidosis is likely to decrease efficiency while an elevated phosphate, by itself, is likely to have little effect on efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Podolin RA, Ford LE. The influence of calcium on shortening velocity of skinned frog muscle fibres. J Muscle Res Cell Motility 1983; 4: 263–282.

    Article  CAS  Google Scholar 

  2. Podolin RA, Ford LE. Influence of partial activation on the force velocity properties of frog skinned muscle fibres in millimolar magnesium ion. J Gen Physiol 1986; 87: 607–631.

    Article  PubMed  CAS  Google Scholar 

  3. Moss RL. Effects on shortening velocity of rabbit skeletal muscle due to variations in the level of thin-filament activation. J Physiol 1986; 377: 487–505.

    PubMed  CAS  Google Scholar 

  4. Chiu CY, Ballou EW, Ford LE. Force, velocity, and power changes during normal and potentiated contractions of cat papillary muscle. Circ Res 1987; 60: 446–458.

    Article  PubMed  CAS  Google Scholar 

  5. Chiu CY, Walley KR, Ford LE. Comparison of the effects of different inotropic interventions on force, velocity, and power in rabbit myocardium. Circ Res 1989; 65: 1161–1171.

    Article  PubMed  CAS  Google Scholar 

  6. Winegrad S. Regulation of cardiac contractile proteins: correlations between physiology and biochemistry. Circ Res 1984; 55: 564–574.

    Article  Google Scholar 

  7. Blinks JR, Endoh M. Modification of myofibrillar responsiveness to Ca++ as an inotropic mechanism. Circulation 1986; 60 (Suppl. III): 111–85–111–97.

    Google Scholar 

  8. Allen DG, Orchard CH. Measurement of intracellular calcium concentration in heart muscle; The effects of inotropic interventions and hypoxia. J Mo! Cell Cardiol 1987; 16: 117–128.

    Article  Google Scholar 

  9. Berman MR, Peterson JN, Yue DT, Hunter WC. Effect of isoproterenol on force transient time course and on stiffness spectra in rabbit papillary muscle in barium contracture. J Mol Cell Cardiol 1988; 20: 415–426.

    Article  PubMed  CAS  Google Scholar 

  10. Hoh JFY, Rossmanith GH, Lee JK, Hamilton AM. Adrenaline increases the rate of cycling of crossbridges in rat cardiac muscle as measured by pseudo—random binary noise perturbation analysis. Circ Res 1988; 62: 452–461.

    Article  PubMed  CAS  Google Scholar 

  11. Brenner B, Schoenberg M, Chalovich JM, Greene LE, Eisenberg E. Evidence for cross—bridge attachment in relaxed muscle at low ionic strength. Prot Nat Acad Sci USA 1982; 79: 7288–7291.

    Article  CAS  Google Scholar 

  12. Allen DG, Blinks JR. Calcium transients in aequorin—injected frog cardiac muscle. Nature 1978; 273: 509–513.

    Article  PubMed  CAS  Google Scholar 

  13. Seow CY, Ford LE. High ionic strength and low pH detain skinned rabbit skeletal muscle crossbridges in a low force state. 1993, (sumbitted).

    Google Scholar 

  14. Huxley AF, Simmons RM. Proposed mechanism of force generation in striated muscle. Nature 1971; 233: 533–538.

    Article  PubMed  CAS  Google Scholar 

  15. Ford LE, Huxley AF, Simmons RM. The relation between stiffness and filament overlap in stimulated frog muscle fibres. J Physiol 1981; 311: 219–249.

    PubMed  CAS  Google Scholar 

  16. Seow CY, Ford LE. Shortening velocity and power output of skinned muscle fibers from mammals having a 25,000—fold range of body mass. J Gen Physiol 1991; 97:541–560.

    Article  PubMed  CAS  Google Scholar 

  17. Katz AM, Hecht HA. The early pump failure of the ischemic heart. Am J Med 1969; 47: 497–502.

    Article  PubMed  CAS  Google Scholar 

  18. Allen DG, Morris PG, Orchard CH, Pirolo JS. A nuclear magnetic resonance study of metabolism in the ferret heart during hypoxia and glycolysis. J Physiol 1985; 361: 185–204.

    PubMed  CAS  Google Scholar 

  19. Seow CY, Ford LE. ADP detains muscle cross—bridges near the end of their force producing power stroke (abstract). Biophys J 1992; 61: A294

    Google Scholar 

  20. Bremel RD, Weber A. A cooperation within actin thin filament in vertebrate skeletal muscle. Nature New Biol 1972; 238: 97–101.

    PubMed  CAS  Google Scholar 

  21. Seow CY, Ford LE. Dual effect of phosphate on the crossbridge cycle of muscle (abstract). Biophys J 1993; 63: (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ford, L.E. (1993). Myocardial Energetics. In: Sideman, S., Beyar, R. (eds) Interactive Phenomena in the Cardiac System. Advances in Experimental Medicine and Biology, vol 346. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2946-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2946-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6280-7

  • Online ISBN: 978-1-4615-2946-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics