Skip to main content

Why Smaller Animals Have Higher Heart Rates

  • Chapter
Interactive Phenomena in the Cardiac System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 346))

Abstract

Diastolic blood pressure is the main driving pressure for coronary perfusion. Diastolic pressure depends on mean pressure and the ratio of the decay time of aortic pressure in diastole (τ) and the duration of diastole (Td) . The ratio of τ, a morphological, arterial parameter, and Td, a functional, cardiac parameter, is the same in all mammals. This could mean that smaller animals have higher heart rates i.e. shorter duration of diastole to match the shorter time constant of the diastolic pressure decay and to guarantee adequate coronary perfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Randall OS, van den Bos GC, Westerhof N. Systemic compliance: does it play a role in the genesis of essential hypertension? ardiovasc Res 1984; 18: 455–465.

    Article  CAS  Google Scholar 

  2. van den Bos GC, Westerhof N, Randall OS. Pulse wave reflection: can it explain the differences between systemic and pulmonary pressure and flow waves? Circ Res 1982; 51: 479–485.

    Article  Google Scholar 

  3. Toorop GP, Westerhof N, Elzinga G. Beat-to-beat estimation of peripheral resistance and arterial compliance during pressure transients. Am J Physiol 1987; 252: H1275–H1283.

    PubMed  CAS  Google Scholar 

  4. Yin FCP, Liu Z. Estimating arterial resistance and compliance during transient conditions in humans. Am J Physiol 1989; 257: H190–H197.

    PubMed  CAS  Google Scholar 

  5. Westerhof N, Elzinga G. Normalized input impedance and arterial decay time over heart period are independent of animal size. Am J Physiol 1991; 261: R126–R1336.

    PubMed  CAS  Google Scholar 

  6. Altman PL, Dittmer DS (eds). Biological Handbook. Fed Am Soc Exptl Biol, Bethesda, 1971; pp 278; 320: 336–341.

    Google Scholar 

  7. Milnor WRHemodynamics. Williams and Wilkins, Baltimore, 1989; pp 165–167.

    Google Scholar 

  8. Schmidt-ielsen K.S. Cambridge Univ Press, New York/Melbourne, 1984; pp 126–128..

    Google Scholar 

  9. Holt JP, Rhode EA, Kines H. Ventricular volumes and body weight in mammals. Am J Physiol 1968; 215: 704–714.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Westerhof, N., Elzinga, G. (1993). Why Smaller Animals Have Higher Heart Rates. In: Sideman, S., Beyar, R. (eds) Interactive Phenomena in the Cardiac System. Advances in Experimental Medicine and Biology, vol 346. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2946-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2946-0_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6280-7

  • Online ISBN: 978-1-4615-2946-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics