Skip to main content

Intracellular Calcium and Myocardial Function During Ischemia

  • Chapter
Interactive Phenomena in the Cardiac System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 346))

Abstract

Cardiac ischemia causes a rapid decline in mechanical performance and, if prolonged, myocardial cell death occurs on reperfusion. The early decline in mechanical performance could, in principle, be caused either by reduced intracellular calcium release or by reduced responsiveness of the myofibrillar proteins to calcium. It is now known that intracellular calcium rises during ischemia and that the early decline in mechanical performance is caused largely by the inhibitory effects of phosphate and protons on the myofibrillar proteins. The rise of intracellular calcium during ischemia is related to the acidosis and is probably caused by calcium influx on the Na/Ca exchanger. This is triggered by a rise in intracellular sodium which enter the cell in exchange for protons on the Na/H exchanger. Intracellular calcium rises still further on reperfusion and the elevation of calcium and the degree of muscle damage are closely correlated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cooley DA, Reul J, Wukash DC. Ischemic contracture of the heart: stone heart. Am J Cardiol 1972; 29: 575–577.

    Article  PubMed  CAS  Google Scholar 

  2. Shen AC, Jennings RB. Myocardial calcium and magnesium in acute ischemic injury. Am J Path 1972; 67: 417–440.

    PubMed  CAS  Google Scholar 

  3. Tani M. Mechanisms of Ca2+ overload in reperfused ischemic myocardium. Ann Rev Physiol 1990; 52: 543–559.

    Article  CAS  Google Scholar 

  4. Lee JA, Allen DG. Mechanisms of acute ischemic contractile failure of the heart: role of intracellular calcium. J Clin Inves 1991; 88: 361–367.

    Article  CAS  Google Scholar 

  5. Kleber AG, Oetliker H. Cellular aspects of early contractile failure in ischemia. In: Fozzard HA, et al (eds) The Heart and Cardiovascular System; 2nd Ed.; Raven Press, New York, 1992.

    Google Scholar 

  6. Kusuoka H, Marban E. Cellular mechanisms of myocardial stunning. Ann Rev Physiol 1992; 54: 243–256.

    Article  CAS  Google Scholar 

  7. Janse MJ, Wit AL. Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol Rev 1989; 69: 1049–1169.

    PubMed  CAS  Google Scholar 

  8. Katz AM, Hecht HH. The early “pump” failure of the ischemic heart. Am J Med 1969; 47: 497–502.

    Article  PubMed  CAS  Google Scholar 

  9. Fabiato A, Fabiato F. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J Physiol (Lond) 1978; 276: 233–255.

    CAS  Google Scholar 

  10. Jacobus WE, Pores IH, Lucas SK, Kallman CH, Weisfeldt ML, Flaherty IT. The role of intrcellular pH in the control of normal and ischemic myocardial contractility: a 31P nuclear magnetic resonance and mass spectroscopy study. In Nuccitelli R, Deamer DW (eds): Intracellular pH: Its Measurement, Regulation and Utilisation in Cellular Function, New York, Alan R Liss Inc, 1982.

    Google Scholar 

  11. Elliott AC, Smith GL, Eisner DA, Allen DG. Metabolic changes during ischemia and their role in contractile failure in isolated ferret hearts. J Physiol (Lond) 1992; 454: 467–490.

    CAS  Google Scholar 

  12. Koretsune Y, Corretti M, Kusuoka H, Marban E. Mechanism of early ischemic contractile failure: inexitability, metabolite accumulation or vascular collapse? Circ Res 1991; 68: 255–262.

    Article  PubMed  CAS  Google Scholar 

  13. Godt RE, Nosek TM. Changes of intracellular milieu with fatigue or hypoxia depress contraction of skinned rabbit skeletal and cardiac muscle. J Physiol (Lond) 1989; 412: 155–180.

    CAS  Google Scholar 

  14. Kentish JC. The effects of inorganic phosphate and creatine phosphate on force production in skinned muscles from rat ventricle. J Physiol (Lond) 1986; 370: 585–604.

    CAS  Google Scholar 

  15. Kitakaze M, Marban E. Cellular mechanism of the modulation of contractile function by coronary perfusion pressure in ferret hearts. J Physiol (Lond) 1989; 414: 455–472.

    CAS  Google Scholar 

  16. Steenbergen C, Murphy E, Levy L, London RE. Elevation in cytosolic free Ca concentration early in myocardial ischemia in perfused rat heart. Circ Res 1987; 60: 700–707.

    Article  PubMed  CAS  Google Scholar 

  17. Lee H-C, Mohabir R, Smith N, Franz MR, Clusin WT. Effect of ischemia on Ca-dependent fluorescence transients in rabbit hearts containing indo-1. Circulation 1988; 78: 1047–1059.

    Article  PubMed  CAS  Google Scholar 

  18. Kihara Y, Grossman W, Morgan JP. Direct measurement of changes in intracellular Ca transients during hypoxia, ischemia and reperfusion of the intact mammalian heart. Circ Res 1989; 65: 1029–1044.

    Article  PubMed  CAS  Google Scholar 

  19. Allen DG, Lee JA, Smith GL. The consequences of simulated ischemia on intracellular Ca2+ and tension in isolated ferret ventricular muscle. J Physiol (Lond) 1989; 410: 297–323.

    CAS  Google Scholar 

  20. Lee JA, Allen DG. Changes in intracellular free calcium concentration during long exposures to simulated ischemia in isolated mammalian ventricular muscle. Circ Res 1992; 71: 58–69.

    Article  PubMed  CAS  Google Scholar 

  21. Smith GL, Allen DG. The effects of metabolic blockade on intracellular calcium concentration in isolated ferret ventricular muscle. Circ Res 1988; 62: 1223–1236.

    Article  PubMed  CAS  Google Scholar 

  22. Tani M, Neely JR. Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Possible involvement of H+-Ca2+ and Na+-Ca2+ exchange. Circ Res 1990; 65: 1045–1056.

    Article  Google Scholar 

  23. Thandroyen FT, McCarthy J, Burton KP, Opie LH. Ryanodine and caffeine prevent ventricular arrhythmias during acute myocardial ischemia and reperfusion in rat heart. Circ Res 1988; 62: 306–314.

    Article  PubMed  CAS  Google Scholar 

  24. Deitmer JW, Ellis D. Interactions between the regulation of the intracellular pH and sodium activity of sheep cardiac Purkinje fibres. J Physiol (Lond) 1980; 304: 471–488.

    CAS  Google Scholar 

  25. Allen DG, Eisner DA, Orchard CH. Factors influencing free intracellular calcium concentration in quiescent ferret ventricular muscle. J Physiol (Lond) 1984; 350: 615–630.

    CAS  Google Scholar 

  26. Cairns SP, Westerblad H, Allen DG. Changes of myoplasmic pH and calcium concentration during exposure to lactate in isolated rat ventricular myocytes. J Physiol (Lond) 1993 (in press).

    Google Scholar 

  27. De Hemptine A, Marrannes R, Vanheel B. Influence of organic acids on intracellular pH. Am J Physiol 1983; 245: C178–C183.

    Google Scholar 

  28. Kleyman TR, Cragoe EJ Jr. Amiloride and its analogs as tools in the study of ion transport. J Memb Biol 1988; 105: 1–21.

    Article  CAS  Google Scholar 

  29. Minta A, Tsien RY. Fluorescent indicators for cytosolic sodium. J Biol Chem 1989; 264: 19449–19457.

    PubMed  CAS  Google Scholar 

  30. Murphy E, Perlman M, London RE, Steenbergen C. Amiloride delays the ischemia-induced rise in cytosolic free calcium. Circ Res 1991; 68: 1250–1258.

    Article  PubMed  CAS  Google Scholar 

  31. Pike MM, Kitakaze M, Marban E. 23Na-NMR measurements of intracellular sodium in intact perfused ferret hearts during ischemia and reperfusion. Am J Physiol 1990; 259: H1767–H1773.

    PubMed  CAS  Google Scholar 

  32. Wilde AAM, Kleber AG. the combined effects of hypoxia, high K+, and acidosis on the intracellular sodium activity and resting potential in guinea pig papillary muscle. Circ Res 1986; 58: 249–256.

    Article  PubMed  CAS  Google Scholar 

  33. Vanheel B, De Hemptine A, Leusen I. Acidification and intracellular sodium ion activity during simulated myocardial ischemia. Am J Physiol 1990; 259: C169–C179.

    PubMed  CAS  Google Scholar 

  34. Lazdunski M, Frelin C, Vigne P. The sodium/hydrogen exchange system in cardiac cells: its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. J Mol Cell Cardiol 1985; 17: 1029–1042.

    Article  PubMed  CAS  Google Scholar 

  35. Vaughan-Jones RD, Wu M-L. Extracellular H+ inactivation of Na+-H+ exchange in the sheep cardiac Purkinje fibre. J Physiol (Lond) 428: 441–466.

    Google Scholar 

  36. Kaila K, Vaughan-Jones RD. Influence of sodium-hydrogen exchange on intracellular pH, sodium and tension in sheep cardiac Purkinje fibres. J Physiol (Lond) 1987; 390: 93–118.

    CAS  Google Scholar 

  37. Turvey SE, Allen DG. The use of SBFI to measure intracellular sodium in Langendorff perfused rat hearts. Proc Australian Physiol Pharmacol Soc 1992; 23: 143P.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Allen, D.G., Cairns, S.P., Turvey, S.E., Lee, J.A. (1993). Intracellular Calcium and Myocardial Function During Ischemia. In: Sideman, S., Beyar, R. (eds) Interactive Phenomena in the Cardiac System. Advances in Experimental Medicine and Biology, vol 346. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2946-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2946-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6280-7

  • Online ISBN: 978-1-4615-2946-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics