Skip to main content

Estimation of Myocardial Mechanical Properties with Dynamic Transverse Stiffness

  • Chapter
Interactive Phenomena in the Cardiac System

Abstract

There are currently no validated methods for accurately estimating regional ventricular mechanical properties. We recently developed a dynamic indentation system that can determine dynamic transverse stiffness (the slope of the relation between the indentation stress and indentation strain during high frequency indentations) in as little as 10 msec. The apparatus consists of an indentation probe coupled to a linear-motor and a computerized control system. This indentation system was tested on beating, canine ventricular septa that were mounted in a biaxial system that could apply strains in the plane of the septum and measure the resulting in-plane stresses. The probe indented the septa with peak displacements of 0.1–0.5 mm at frequencies of 20 and 50 Hz. The transverse stiffness was shown to be related to the in-plane stress and stiffness in the isolated septa. Dynamic transverse stiffness was then used to study the effects of myocardial perfusion on passive tissue stiffness and on contractility. In addition, the transverse stiffness was studied in intact canine hearts during diastole, where it was related to the chamber stiffness. Thus, dynamic transverse stiffness appears to allow estimation of myocardial mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tennant R, Wiggers CJ. The effect of coronary occlusion on myocardial contraction. Am J Physiol 1935; 112: 351–361.

    Google Scholar 

  2. Ross J Jr, Sonnenblick EH, Covell JW, Kaiser GA, Spiro D. The architecture or the heart in systole and diastole. Circ Res 1967; 21: 409–421.

    Article  PubMed  Google Scholar 

  3. Tyberg JV, Forrester JS, Farmley WW. Altered segmental function and compliance in acute myocardial ischemia. Eur J Cardiol 1974; 14: 307–317.

    Google Scholar 

  4. Hutchins GM, Bulkley BH, Moore GW, Piasio MA, Lohr FT. Shape of the human cardiac ventricles. Am J Cardiol 1978; 41: 646–654.

    Article  PubMed  CAS  Google Scholar 

  5. Yin FCP. Ventricular Wall Stress. Circ Res 1981; 49: 829–842.

    Article  PubMed  CAS  Google Scholar 

  6. Janicki JS, Weber KT, Gochman RF, Shroff S, Geheb FJ. Three-dimensional myocardial and ventricular shape: a surface representation. Am J Physiol (Heart Circ Physiol) 1981; 10: Hl-H11.

    Google Scholar 

  7. Gallagher KP, Osakada G, Hess OM, Koziol JA, Kemper WS, Ross J Jr. Subepicardial segmental function during coronary stenosis and the role of myocardial fiber orientation. Circ Res 1982; 50: 352–359.

    Article  PubMed  CAS  Google Scholar 

  8. Ross J Jr. Assessment of cardiac function and myocardial contractility. In: Hurst JW, ed. The Heart. New York: McGraw-Hill, 1982; pp 310–33.

    Google Scholar 

  9. Ross J Jr. Cardiac function and myocardial contractility: A perspective. J Am Coll Cardiol 1983; 1: 5262.

    Article  Google Scholar 

  10. Sandler H, Dodge HT. Left ventricular tension and stress in man. Circ Res 1963; 13: 91–104.

    Article  PubMed  CAS  Google Scholar 

  11. Mirsky I. Effects of anisotropy and nonhomogeneity on left ventricular stresses in the intact heart. Bull Math Biophys 1973; 32: 197–213

    Article  Google Scholar 

  12. Janz RF, Grimm AF. Finite-element model for the mechanical behavior of the left ventricle. Circ Res 1972; 30: 244–252.

    Article  PubMed  CAS  Google Scholar 

  13. Peters WH, Ranson WF. Digital imaging techniques in experimental stress analysis. Optical Eng 1982; 21(3): 427–431.

    Article  Google Scholar 

  14. Prinzen TI’, Arts T, Prinzen FW, Reneman RS. Mapping of epicardial deformation using a video processing technique. J Biomech 1986; 19: 264–263.

    Article  Google Scholar 

  15. Theroux P, Franklin, Ross J Jr, Kemper WS. Regional myocardial function during acute coronary occlusion and its modification by pharmacological agents in the dog. Circ Res 1974; 35: 896–908.

    Article  PubMed  CAS  Google Scholar 

  16. Hinds JE, Hawthorne EH, Mullins CB, Mitchell JH. Instantaneous changes in the left ventricular lengths occurring in dogs during the cardiac cycle. Fedn Proc Fedn Am Soc Exp Biol 1969; 28: 1351–1357.

    CAS  Google Scholar 

  17. Walley KR, Grover M, Raff GL, Benge JW, Hannaford B, Glantz SA. Left ventricular dynamic geometry in the intact and open chest dog. Circ Res 1982; 50: 573–589.

    Article  PubMed  CAS  Google Scholar 

  18. Feigl EO, Simon GA, Fry DL. Auxotonic and isometric cardiac force transducers. J Appl Physiol 1967; 23: 597–600.

    PubMed  CAS  Google Scholar 

  19. Burns JW, Covell JW, Myers R, Ross J Jr. Comparison of directly measured left ventricular wall stress calculated from geometric reference figures. Circ Res 1971; 28:611–621.

    Article  PubMed  CAS  Google Scholar 

  20. Huisman RM, Elzinga G, Westerhoff N, Sipkema P. Measurement of left ventricular wall stress. Cardiovasc Res 1980; 14: 142–153.

    Article  PubMed  CAS  Google Scholar 

  21. Halperin H, Chew PH, Weisfeldt ML, Sagawa K, Humphrey JD, Yin FCP. Transverse stiffness: A method for estimation of myocardial wall stress. Circ Res 1987; 61(5): 695–703.

    Article  PubMed  CAS  Google Scholar 

  22. Yin FCP, Tompkins WR, Peterson KL, Intaglietta M. A video dimension analyzer. IEEE Trans Biomed Eng 1972; BME-19: 376–381.

    Article  PubMed  CAS  Google Scholar 

  23. Halperin HR, Tskitlik JE, Gelfand M, Downs J, Yin FCP. Servo-controlled indenter for determining the transverse stiffness of ventricular muscle. IEEE Trans Biomed Eng 1991; 38(6): 605.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Halperin, H.R., Tsitlik, J.E., Rayburn, B.K., Resar, J.R., Livingston, J.Z., Yin, F.C.P. (1993). Estimation of Myocardial Mechanical Properties with Dynamic Transverse Stiffness. In: Sideman, S., Beyar, R. (eds) Interactive Phenomena in the Cardiac System. Advances in Experimental Medicine and Biology, vol 346. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2946-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2946-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6280-7

  • Online ISBN: 978-1-4615-2946-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics