Skip to main content

Ultrastructural Analysis of Synaptic Endings of Auditory Nerve Fibers in Cats: Correlations with Spontaneous Discharge Rate

  • Chapter
Book cover The Mammalian Cochlear Nuclei

Part of the book series: NATO ASI series ((NSSA,volume 239))

Abstract

In mammals, all known auditory information enters the brain by way of the auditory nerve. The auditory nerve is a bundle of axons whose cell bodies are located in the spiral ganglion within the cochlea. The ganglion cells send peripheral processes out to the organ of Corti to contact acoustic receptor cells and send central processes by way of the auditory nerve to terminate in the cochlear nucleus. In this way, the ganglion cells convey the output of the receptors to neurons of the brain. In turn, cells of the cochlear nucleus give rise to the ascending auditory pathways. The role of the cochlear nucleus is to receive incoming auditory nerve discharges, to preserve or transform the signals, and to distribute outgoing activity to higher brain centers. In order to understand mechanisms of stimulus coding in these early stages of the auditory system, we need to know the nature of the signals conveyed by auditory nerve fibers and structural details of their destination in the cochlear nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, D.J., Rose, J.E. and Brugge, J.F., 1971, Temporal position of discharges in single auditory nerve fibers within the cycle of a sine-wave stimulus: frequency and intensity effects, J. Acoust. Soc. Am., 49:1131–1139.

    Article  PubMed  Google Scholar 

  • Berglund, A.M. and Ryugo, D.F., 1987, Hair cell innervation by spiral ganglion neurons in the mouse, J. Comp. Neurol., 255:560–570.

    Article  PubMed  CAS  Google Scholar 

  • Berglund, A.M. and Ryugo, D.K., 1991, Neurofilament antibodies and spiral ganglion neurons of the mammalian cochlea, J. Comp. Neurol., 308:209–223.

    Article  Google Scholar 

  • Brown, M.C., 1987, Morphology of labeled afferent fibers in the guinea pig cochlea, J. Comp. Neurol., 260:591–604.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M.C., Berglund, A.M., Kiang, N.Y.S. and Ryugo, D.K., 1988, Central trajectories of type II spiral ganglion neurons, J. Comp. Neurol., 278:581–590.

    Article  PubMed  CAS  Google Scholar 

  • Evans, E.F., and Palmer, A.R., 1980, Relationship between the dynamic range of cochlear nerve fibers and their spontaneous activity, Exp. Brain Res., 40:115–118.

    Article  PubMed  CAS  Google Scholar 

  • Fekete, D.M., Rouiller, E.M., Liberman M.C. and Ryugo, D.K., 1984, The central projections of intracellularly labeled auditory nerve fibers in cats, J. Comp. Neurol., 229:432–450.

    Article  PubMed  CAS  Google Scholar 

  • Kellerhals, B., Engström, H. and Ades, H.W., 1967, Die Morphologie des Ganglion spirale Cochleae, Acta Otolaryngol. Suppl., 226:6–33.

    Google Scholar 

  • Kiang, N.Y.S., Watanabe, T., Thomas, L.C. and Clark, L.F., 1965, Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve, MIT Press, Cambridge.

    Google Scholar 

  • Kiang, N.Y.S., Rho, J.M., Northrup, C.C., Liberman, M.C. and Ryugo, D.K., 1982, Hair-cell innervation by spiral ganglion cells in adult cats, Science, 217:175–177.

    Article  PubMed  CAS  Google Scholar 

  • Liberman, M.C., 1978, Auditorynerve response from cats raised in a low-noise chamber, J. Acoust. Soc. Am., 53:442–455.

    Article  Google Scholar 

  • Liberman, M.C., 1982, Single-neuron labeling in the cat auditory nerve, Science, 216:1239–1241.

    Article  PubMed  CAS  Google Scholar 

  • Liberman, M.C., 1991, Spatial segregation of auditory-nerve projections in the cochlear nucleus according to spontaneous discharge rates, Abstr. Assoc. Res. Otolaryngol., 14:42.

    Google Scholar 

  • Liberman, M.C., Dodds, L.W. and Pierce, S., 1991, Afferent and efferent innervation of the cat cochlea: Quantitative analysis with light and electron microscopy, J. Comp. Neurol., 301:443–460.

    Article  Google Scholar 

  • Lorente de Nó, R., 1933, Anatomy of the eighth nerve. III. General plan of structure of the primary cochlear nuclei, Laryngoscope, 43:327–350.

    Google Scholar 

  • Mugnaini, E., Osen, K.K., Dahl, A., Friedrich Jr., V.L. and Korte, G., 1980, Fine structure of granule cells and related interneurons (termed Golgi cells) in the cochlear nuclear complex of cat, rat and mouse, J. Neurocytol., 9:537–570.

    Article  PubMed  CAS  Google Scholar 

  • Osen, K.K., 1969, Cytoarchitecture of the cochlear nuclei in the cat, J. Comp, Neurol., 136:453–484.

    Article  CAS  Google Scholar 

  • Pfeiffer, R.R., 1966, Classification of response patterns of spike discharges for units in the cochlear nucleus: tone-burst stimulation, Exp. Brain Res., 1:220–235.

    Article  PubMed  CAS  Google Scholar 

  • Rhode, W.S., Oertel, D. and Smith, P.H., 1983, Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat ventral cochlear nucleus, J. Comp. Neurol., 213:448–463.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, D., 1984, Horseradish peroxidase injection of physiologically characterized afferent and efferent neurones in the guinea pig spiral ganglion, Hearing Res., 15:113–121.

    Article  CAS  Google Scholar 

  • Rouiller, E.M., Cronin-Schreiber, R., Fekete, D.M. and Ryugo, D.K., 1986, The central projections of intracellularly labeled auditory nerve fibers in cats: An analysis of terminal morphology, J. Comp. Neurol., 249:261–278.

    Article  PubMed  CAS  Google Scholar 

  • Rouiller, E.M. and Ryugo, D.K., 1984, Intracellular marking of physiologically characterized neurons in the ventral cochlear nucleus of the cat, J. Comp. Neurol., 225:167–186.

    Article  PubMed  CAS  Google Scholar 

  • Ryugo, D.K. and Rouiller, E.M., 1988, The central projections of intracellularly labeled auditory nerve fibers in cats: Morphometric correlations with physiological properties, J. Comp. Neurol., 271:130–142.

    Article  PubMed  CAS  Google Scholar 

  • Ryugo, D.K., Dodds, L.W., Benson, T. and Kiang, N.Y.S., 1991, Unmyelinated axons of the auditory nerve in cats, J. Comp. Neurol., 308:209–223.

    Article  PubMed  CAS  Google Scholar 

  • Ryugo, D.K. and Sento, S., 1991, Synaptic connections of the auditory nerve in cats: Relationship between endbulbs of Held and spherical bushy cells, J. Comp. Neurol., 305:35–48.

    Article  PubMed  CAS  Google Scholar 

  • Sachs, M.B. and Abbas, P.J., 1974, Rate versus level functions for auditory nerve fibers in cats: Tone-burst Stimulation, J. Acoust. Soc. Am., 56:1835–1847.

    Article  PubMed  CAS  Google Scholar 

  • Sento, S. and Ryugo, D.K., 1989, Endbulbs of Held and spherical bushy cells in cats: Morphological correlates with physiological properties, J. Comp. Neurol., 280:553–562.

    Article  PubMed  CAS  Google Scholar 

  • Smith, P.H. and Rhode, W.S., 1989, Structural and functional properties distinguish two types of multipolar cells in the ventral cochlear nucleus, J. Comp. Neurol., 282:595–616.

    Article  PubMed  CAS  Google Scholar 

  • Spoendlin, H., 1973, The innervation of the cochlear receptor, in: Mechanisms in Hearing, A.R. Møller, ed., Academic Press, New York, pp. 185–229.

    Chapter  Google Scholar 

  • Tolbert, L.P. and Morest, D.K., 1982, The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: Electron microscopy, Neuroscience, 7:3053–3067.

    Article  PubMed  CAS  Google Scholar 

  • Winslow, R.L., Barta, P.E. and Sachs, M.B., 1987, Rate coding in the auditory-nerve, in: Auditory Processing of Complex Signals, W.A. Yost and C.S. Watson, eds., Lawrence Erlbaum Associates, Publishers, Hillsdale, pp. 212–224.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ryugo, D.K., Wright, D.D., Pongstaporn, T. (1993). Ultrastructural Analysis of Synaptic Endings of Auditory Nerve Fibers in Cats: Correlations with Spontaneous Discharge Rate. In: Merchán, M.A., Juiz, J.M., Godfrey, D.A., Mugnaini, E. (eds) The Mammalian Cochlear Nuclei. NATO ASI series, vol 239. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2932-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2932-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6273-9

  • Online ISBN: 978-1-4615-2932-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics