Skip to main content

Physiology of the Dorsal Cochlear Nucleus Molecular Layer

  • Chapter

Part of the book series: NATO ASI series ((NSSA,volume 239))

Abstract

The dorsal cochlear nucleus (DCN) is a complex but elegantly organized division of the cochlear nucleus. Lorente de Nó (’81) recognized that the cortex of the nucleus (layers 1 and 2) bore a remarkable resemblance to the cerebellum, in both the structural characteristics of the cells and their organization. The chief organization of the nucleus is based on a concentric laminar arrangement of cells, their dendrites, and fiber systems, somewhat like a single cerebellar folium. A local cartesian framework can be imposed on the nucleus, where the principal axes are depth (perpendicular to the local surface), the striai axis (parallel to the long axis of the nucleus and to the unmyelinated parallel fibers in the molecular layer), and the transstriai axis (parallel to the isofrequency planes formed by the auditory nerve fibers). Subsequent anatomical studies have exposed further similarities between the outer layers of the DCN and the cerebellum. Although the two structures serve different functions, the common ontogenetic origins and parallel expression of proteins in corresponding cell types (Mugnaini and Morgan,’ 87; Mugnaini et al.,’ 87; Berrebi and Mugnaini, this volume; Berrebi et al.,’ 90) suggests that the two structures share some mechanisms of information processing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, W.C. and Wickens, J.R., 1991, Heterosynaptic long-term depression is facilitated by blockade of inhibition in area CA1 of the hippocampus, Brain Res., 546:336–340.

    Article  PubMed  CAS  Google Scholar 

  • Berrebi, A.S. and Mugnaini, E., 1991a, Distribution and targets of the cartwheel cell axon in the dorsal cochlear nucleus of the guinea pig, Anat. Embryol., 183:427–454.

    Article  PubMed  CAS  Google Scholar 

  • Berrebi, A.S., Morgan, J.I., and Mugnaini, E., 1990, The Purkinje cell class may extend beyond the cerebellum, J. Neurocytol., 19:643–654.

    Article  PubMed  CAS  Google Scholar 

  • Blackstone, C.D., Supattapone, S., and Snyder, S.H., 1989, Inositolphospholipid-linked glutamate receptors mediate cerebellar parallel-fiber-Purkinje-cell synaptic transmission, Proc. Natl. Acad. Sci., 86:4316–4320.

    Article  PubMed  CAS  Google Scholar 

  • Collinridge, G.L., Kehl, S.J., and McLennan, H., 1983, The antagonism of amino acid-induced excitation of rat hippocampal CA1 neurons in vitro, J. Physiol., 344:33–46.

    Google Scholar 

  • Connor, J.A. and Stevens, C.F., 1971, Voltage clamp studies of a transient outward membrane current in gastropod neural somata, J. Physiol., 312:21–30.

    Google Scholar 

  • Crepel, F. and Krupa, M., 1988, Activation of protein kinase C induces a long term depression of glutamate sensitivity of cerebellar Purkinje cells. An in vitro study, Brain Res., 458:397–401.

    Article  PubMed  CAS  Google Scholar 

  • Crepel, F. and Jaillard, D., 1991, Pairing of pre-and postsynaptic activities in cerebellar Purkinje cells induces long-term changes in synaptic efficacy in vitro, J. Physiol., 432:123–141.

    PubMed  CAS  Google Scholar 

  • De Camilli, P., Miller, P.E., Levitt, P., Walter, U., and Greengard, P., 1984, Anatomy of cerebellar Purkinje cells in the rat determined by a specific immunohistochemical marker, Neuroscience, 11:761–817.

    Article  PubMed  Google Scholar 

  • Eccles, J.C., Ito, M., and Szentagothai, J., 1967, “The Cerebellum as a Neuronal Machine,” Springer-Verlag, New York.

    Google Scholar 

  • Fields, R.D., Yu, C., and Nelson, P.G., 1991, Calcium, network activity, and the role of NMDA channels in synaptic plasticity in vitro, J. Neurosci., 11:134–146.

    PubMed  CAS  Google Scholar 

  • Fox, A.P., Nowycky, M.C., and Tsien, R.W., 1987, Kinetic and pharmacological properties distinguish three types of calcium currents in chick sensory neurones, J. Physiol., 394:149–172.

    PubMed  CAS  Google Scholar 

  • Godfrey, D.A., Kiang, N.Y.S., Norris, B.E., 1975, Single unit activity in the dorsal cochlear nucleus of the cat, J. Comp. Neurol., 162:269–284.

    Article  PubMed  CAS  Google Scholar 

  • Hackney, C.M., Osen, K.K., Kolston, J., 1990, Anatomy of the cochlear nuclear complex of guinea pig, Anat. Embryol., 182:123–149.

    Article  PubMed  CAS  Google Scholar 

  • Harris, E.W. and Cotman, C.W., 1983, Effects of acidic amino acid antagonists on paired-pulse potentiation at the lateral perforant path, Exp. Brain Res., 52:455–460.

    Article  PubMed  CAS  Google Scholar 

  • Hirano, T., 1990, Depression and potentiation of the synaptic transmission between a granule cell and a Purkinje cell in rate cerebellar culture, Neurosci. Lett., 119:141–144.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, J.A. and Oertel, D., 1988a, Intrinsic properties of neurones in the dorsal cochlear nucleus of mice in vitro, J. Physiol., 396:535–548.

    PubMed  CAS  Google Scholar 

  • Hirsch, J.A. and Oertel, D., 1988b, Synaptic connections in the dorsal cochlear nucleus of mice, in vitro, J. Physiol., 396:549–562.

    PubMed  CAS  Google Scholar 

  • Ito, M., 1989, Long-term depression, Ann. Rev. Neurosci., 12:85–102.

    Article  PubMed  CAS  Google Scholar 

  • Ito, M., Sakurai, M., and Tongroach, P., 1982, Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar of cerebellar purkinje cells, J. Physiol., 324:113–134.

    PubMed  CAS  Google Scholar 

  • Kane, E.S., 1974, Synaptic organization in the dorsal cochlear nucleus of the cat: A light and electron microscopic study, J. Comp. Neurol., 155:301–330.

    Article  PubMed  CAS  Google Scholar 

  • Kano, M. and Kato, M., 1987, Quisqualate receptors are specifically involved in cerebellar synaptic plasticity, Nature, 325:276–279.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, F., Nishigori, A., Shirokawa, T., and Tsumoto, T., 1989, Long term potentiation and N-methyl-D-aspartate receptors in the visual cortex of young rats, J. Physiol., 414:125–144.

    PubMed  CAS  Google Scholar 

  • Komatsu, Y., Fujii, K., Sakaguchi, H., and Toyama, K., 1988, Long-term potentiation of synaptic transmission in kitten visual cortex, J. Neurophysiol., 59:124–141.

    PubMed  CAS  Google Scholar 

  • Komatsu, Y., Nakajima, S., and Toyama, K., 1991, Induction of long-term potentiation without participation of N-methyl-D-aspartate receptors in kitten visual cortex, J. Neurophysiol., 65:20–32.

    PubMed  CAS  Google Scholar 

  • Linden, D.J., Dickinson, M.H., Smeyne, M., and Connor, J.A., 1991, A long-term depression of AMPA currents in cultured cerebellar Purkinje neurons, Neuron, 7:81–89.

    Article  PubMed  CAS  Google Scholar 

  • Llinás, R. and Sugimori, M., 1980, Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices, J. Physiol., 305:171–195.

    PubMed  Google Scholar 

  • Llinás, R., 1988, The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system function, Science, 242: 1654–1664.

    Article  PubMed  Google Scholar 

  • Lorente de Nó, R., 1981, “The Primary Acoustic Nuclei”, Raven Press, New York.

    Google Scholar 

  • Malenka, R.C., Kauer, J.A., Zucker, R.S., and Nicoll, R.A., 1988, Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission, Science, 242:81–84.

    Article  PubMed  CAS  Google Scholar 

  • Malinow, R., Madison, D.V., and Tsien, R.W., 1988, Persistent protein kinase activity underlying long-term potentiation, Nature, 335:820–824.

    Article  PubMed  CAS  Google Scholar 

  • Malinow, R., Schulman, H., and Tsien, R.W., 1989, Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP, Science, 245:862–866.

    Article  PubMed  CAS  Google Scholar 

  • Manis, P.B., 1989a, Responses to parallel fiber stimulation in the guinea pig dorsal cochlear nucleus in vitro, J. Neurophysiol., 61:149–161.

    PubMed  CAS  Google Scholar 

  • Manis, P.B., 1989b, Evidence for functional NMDA-type receptors in the guinea pig dorsal cochlear nucleus, Assoc. for Research in Otolaryngology Abstr., 12:60.

    Google Scholar 

  • Manis, P.B., 1990a, Pharmacology of synaptic transmission at parallel fiber synapses in the dorsal cochlear nucleus, Assoc. for Research in Otolaryngology Abstr. 13:95.

    Google Scholar 

  • Manis, P.B., 1990b, Membrane properties and discharge characteristics of guinea pig dorsal cochlear nucleus neurons studied in vitro, J. Neurosci., 10:2338–2351.

    PubMed  CAS  Google Scholar 

  • Mason, A. and Larkman, A., 1990, Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology, J. Neurosci., 10:1415–1428.

    PubMed  CAS  Google Scholar 

  • McCormick, D.A., Connors, B.W., Lighthall, J.W., and Prince, D.A., 1985, Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex, J. Neurophysiol., 54:782–806.

    PubMed  CAS  Google Scholar 

  • Mignery, G.A., Sudhof, T.C., Takei, K., and DeCamilli, P., 1989, Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor, Nature, 342:192–195.

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini, E., 1985, GABA neurons in the superficial layers of the rat dorsal cochlear nucleus: Light and electron microscopic immunocytochemistry, J. Comp. Neurol. 235:61–81.

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini, E. and Morgan, J.I., 1987, The neuropeptide cerebellin is a marker for two similar neuronal circuits in rat brain, Proc. Natl. Acad. Sci., 84:8692–8696.

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini, E., Berrebi, A.S., Dahl, A.-L., and Morgan, J.I., 1987, The Polypeptide PEP-19 is a marker for Purkinje neurons in cerebellar cortex and cartwheel neurons in the dorsal cochlear nucleus, Arch. ltal. Biol., 126:41–67.

    CAS  Google Scholar 

  • Nicoll, R.A., Kauer, J.A., and Malenka, R.C., 1988, The current excitement in long-term potentiation, Neuron, 1:97–103.

    Article  PubMed  CAS  Google Scholar 

  • Oertel, D., Wu, S-H., 1989, Morphology and physiology of cells in slice preparations of the dorsal cochlear nucleus of mice, J. Comp. Neurol., 283:228–247.

    Article  PubMed  CAS  Google Scholar 

  • Osen, K.K. and Mugnaini, E., 1981, Neuronal circuits in the dorsal cochlear nucleus, in: “Neuronal Mechanisms in Hearing,” J. Syka and L. Aitkin, eds., Plenum, New York.

    Google Scholar 

  • Peyert, D., Geffard, M., and Aran, J.-M., 1986, GABA immunoreactivity in the primary nuclei of the auditory central nervous system, Hearing Res., 23:115–121.

    Article  Google Scholar 

  • Pfeiffer, R.R., 1966, Classification of response patterns of spike discharges for units in the cochlear nucleus: Tone burst stimulation, Exp. Brain Res., 1:220–235.

    Article  PubMed  CAS  Google Scholar 

  • Rhode, W.S., Smith, P.H., and Oertel, D., 1983, Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat dorsal cochlear nucleus, J. Comp. Neurol., 213:426–447.

    Article  PubMed  CAS  Google Scholar 

  • Ryugo, D.K., Sharp, A.H., Wright, D.D., and Snyder, S.H., 1992, Immunocytochemical localization of the inositol 1,4,5-trisphosphate receptor in cartwheel cells of the mammalian dorsal cochlear nucleus, Assoc. for Ressearch in Otolaryngology Abstr., 15:76.

    Google Scholar 

  • Saito, N., Kikkawa, U., Nishizuka, Y., and Tanaka, C., 1988, Distribution of protein kinase C-like immunoreactive neurons in rat brain, J. Neurosci., 8:369–382.

    PubMed  CAS  Google Scholar 

  • Sakurai, M., 1987, Synaptic modification of parallel fibre-Purkinje cell transmission in in vitro guinea pig cerebellar slices, J. Physiol., 394:463–480.

    PubMed  CAS  Google Scholar 

  • Sakurai, M., 1990, Calcium is an intracellular mediator of the climbing fiber in induction of cerebellar long-term depression, Proc. Natl. Acad. Sci., 87:3383–3385.

    Article  PubMed  CAS  Google Scholar 

  • Spirou, G.A., Wright, D.D., Ryugo, D.K., and Manis, P.B., 1991, Physiology and morphology of cells from slice preparations of the guinea pig dorsal cochlear nucleus, Assoc. for Research in Otolaryngology Abstr., 14:142.

    Google Scholar 

  • Stafstrom, C.E., Schwindt, P.C., Chubb, M.C. and Crill, W.E., 1985, Properties of persistent sodium conductance and calcium conductance of layer V neurons from cat sensorimotor cortex in vitro, J. Neurophysiol., 53:153–170.

    PubMed  CAS  Google Scholar 

  • Stratton, K.R., Worley, P.F., and Baraban, J.M., 1990, Pharmacological characterization of phosphoinositide-linked glutamate receptor excitation of hippocampal neurons, Eur. J. Pharmacol., 186:357–361.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X-J., Rinzel, J., and Rogawski, M.A., 1991, A model of the T-type calcium current and the low-threshold spike in thalamic neurons, J. Neurophysiol., 66:839–850.

    PubMed  CAS  Google Scholar 

  • Wenthold, R.J., Zempel, J.M., Parakkal, K.A., Reeks, K.A., and Altschuler, R.A., 1986, Immunocytochemical localization of GABA in the cochlear nucleus of the guinea pig, Brain Res., 380:7–18.

    Article  PubMed  CAS  Google Scholar 

  • Wenthold, R.J., Huie, D., Altschuler, R.A., and Reeks, K.A., 1987, Glycine immunoreactivity localized in the cochlear nucleus and superior olivary complex, Neuroscience, 22:897–912.

    Article  PubMed  CAS  Google Scholar 

  • Worley, P.F., Baraban, J.M., and Snyder, S.H., 1986a, Heterogenous localization of protein kinase C in rat brain: Autoradiographic analysis of phorbol ester receptor binding, J. Neurosci., 6:199–207.

    PubMed  CAS  Google Scholar 

  • Worley, P.F., Baraban, J.M., DeSouza, E.B., and Snyder, S.H., 1986b, Mapping second messenger systems in the brain: Differential localizations of adenylate cyclase and protein kinase C, Proc. Natl. Acad. Sci., 83:4053–4057.

    Article  PubMed  CAS  Google Scholar 

  • Wouterlood, F.G. and Mugnaini, E., 1984, Cartwheel neurons of the dorsal cochlear nucleus: A Golgi-electron microscopic study in rat, J. Comp. Neurol., 227:136–157.

    Article  PubMed  CAS  Google Scholar 

  • Wu, S.H. and Oertel, D., 1984, Intracellular injection with horseradish peroxidase of physiologically characterized stellate and bushy cells in slices of mouse anteroventral cochlear nucleus, J. Neurosci., 4:1577–1588.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Manis, P.B., Scott, J.C., Spirou, G.A. (1993). Physiology of the Dorsal Cochlear Nucleus Molecular Layer. In: Merchán, M.A., Juiz, J.M., Godfrey, D.A., Mugnaini, E. (eds) The Mammalian Cochlear Nuclei. NATO ASI series, vol 239. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2932-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2932-3_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6273-9

  • Online ISBN: 978-1-4615-2932-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics