Skip to main content

GABA and Glycine Inputs Control Discharge Rate within the Excitatory Response Area of Primary-Like and Phase-Locked AVCN Neurons

  • Chapter
The Mammalian Cochlear Nuclei

Part of the book series: NATO ASI series ((NSSA,volume 239))

Abstract

The studies presented in this chapter were designed to identify potential functions for noncochlear inputs onto spherical bushy cells in the anteroventral cochlear nucleus (AVCN). Compounds related to glycine and gamma aminobutyric acid (GABA) were iontophoretically applied in a number of different acoustic paradigms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J.C. and Mugnaini, E., 1987, Patterns of glutamate decarboxylase immunostaining in the feline cochlear nuclear complex studied with silver enhancement and electron microscopy, J. Comp. Neurol., 262:375–401.

    Article  PubMed  CAS  Google Scholar 

  • Altschuler, R.A., Betz, H., Parakkal, M.H., Reeks, K.A., and Wenthold, R.J., 1986, Identification of glycinergic synapses in the cochlear nucleus through immunocytochemical localization of the postsynaptic receptor, Brain Res., 369:316–320.

    Article  PubMed  CAS  Google Scholar 

  • Benson, C.G. and Potashner, S.J., 1990, Retrograde transport of [3H]glycine from the cochlear nucleus to the superior olive in the guinea pig, J. Comp. Neurol., 296:415–426.

    Article  PubMed  CAS  Google Scholar 

  • Bourk, T.R., 1976, Electrical responses of neural units in the anteroventral cochlear nucleus of the cat, Doctoral Thesis, Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology.

    Google Scholar 

  • Bowery, N., 1989, GABAB receptors and their significance in mammalian pharmacology, TIPS, 10(10):401–407.

    PubMed  CAS  Google Scholar 

  • Brawer, J.R., Morest, D.K. and Kane, E.C., 1974, The neuronal architecture of the cochlear nucleus of the cat, J. Comp. Neurol., 155(3): 251–283.

    Article  PubMed  CAS  Google Scholar 

  • Brownell, W.E., 1975, Organization of the cat trapezoid body and the discharge characteristics of its fibers, Brain Res., 94:413–433.

    Article  PubMed  CAS  Google Scholar 

  • Cant, N.B. and Morest, D.K., 1978, Axons from non-cochlear sources in the anteroventral cochlear nucleus of the cat. A study with the rapid golgi method, Neurosci., 3:1003–1029.

    Article  CAS  Google Scholar 

  • Cant, N.B. and Morest, D.K., 1979, Organization of the neurons in the anterior division of the anteroventral cochlear nucleus of the cat. Light microscopic observations, Neurosci., 4:1909–1923.

    Article  CAS  Google Scholar 

  • Canzek, V. and Reubi, J.C., 1980, The effect of cochlear nerve lesion on the release of glutamate, aspartate, and GABA from cat cochlear nucleus, in vitro, Exp. Brain Res., 38:437–441.

    Article  CAS  Google Scholar 

  • Caspary, D.M., 1972, Classification of sub-populations of neurons in the cochlear nuclei of the kangaroo rat, Exp. Neurol., 37:131–151.

    Article  PubMed  CAS  Google Scholar 

  • Caspary, D.M., 1986, Cochlear nuclei: functional neuropharmacology of the principal cell types, in: “Neurobiology of Hearing: The Cochlea,” R. Altschuler, R. Bobbin, and D. Hoffman, eds., Raven Press, New York, pp. 303–332.

    Google Scholar 

  • Caspary, D.M., Havey, D.C. and Faingold, C.L., 1979, Effects of microiontophoretically applied glycine and GABA on neuronal response patterns in the cochlear nuclei, Brain Res., 172:179–185.

    Article  PubMed  CAS  Google Scholar 

  • Caspary, D.M., Pazara, K.E., Kössl, M. and Faingold, C.L., 1987, Strychnine alters the fusiform cell output from the dorsal cochlear nucleus, Brain Res., 417:273–282.

    Article  PubMed  CAS  Google Scholar 

  • Caspary, D.M., Rybak, L. and Faingold, C.L., 1984, Baclofen reduces tone-evoked and spontaneous activity of cochlear nucleus neurons, Hearing Res., 13:113–122.

    Article  CAS  Google Scholar 

  • Costalupes, J.A., Young, E.D. and Gibson, D.J., 1984, Effects of continuous noise backgrounds on rate response of auditory nerve fibers in cat, J. Neurophysiol., 51:1326–1344.

    PubMed  CAS  Google Scholar 

  • Davies, W.E., 1975, The distribution of GABA transaminase-containing neurones in the cat cochlear nucleus, Brain Res., 83:27–33.

    Article  CAS  Google Scholar 

  • Dutar, P. and Nicoll, R.A., 1988, A physiological role for GABAB receptors in the central nervous system, Nature, 332:156–158.

    Article  PubMed  CAS  Google Scholar 

  • Elverland, H.H., 1977, Descending connections between the superior olivary and cochlear nuclear complexes in the cat studied by autoradiographic and horseradish peroxidase methods, Exp. Brain Res., 27:397–412.

    Article  PubMed  CAS  Google Scholar 

  • Evans, E.F. and Nelson, P.G., 1973, On the functional relationship between the dorsal and ventral divisions of the cochlear nucleus of the cat, Exp. Brain Res., 17:428–442.

    PubMed  CAS  Google Scholar 

  • Feng, A.S. and Vater, M., 1985, Functional organization of the cochlear nucleus of rufous horseshoe bats (rhinolophus rouxi): Frequencies and internal connections are arranged in slabs, J. Comp. Neurol., 235:529–553.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, S.K. and Davies, W.E., 1976, GABA and its related enzymes in the lower auditory system of the guinea pig, J. Neurochem., 27:1145–1155.

    Article  PubMed  CAS  Google Scholar 

  • Friauf, E. and Ostwald, J., 1988, Divergent projections of physiologically characterized rat ventral cochlear nucleus neurons as shown by intra-axonal injection of horseradish peroxidase, Exp. Brain Res., 73:263–284.

    Article  PubMed  CAS  Google Scholar 

  • Frisina, R.D., Smith, R.L. and Chamberlain, S.C., 1990, Encoding of amplitude modulation in the gerbil cochlear nucleus: II. Possible neural mechanisms, Hearing Res., 44:123–142.

    Article  CAS  Google Scholar 

  • Frisina, R.D., Smith, R.L. and Chamberlain, S.C., 1985, Differential encoding of rapid change in sound amplitude by second-order auditory neurons, Exp. Brain Res., 60:417–422.

    Article  PubMed  CAS  Google Scholar 

  • Frostholm, A. and Rotter, A., 1986, Autoradiographic localization of receptors in the cochlear nucleus of the mouse, Brain Res. Bull., 16:189–203.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, D.J., Young, E.D. and Costalupes, J.A., 1985, Similarity of dynamic range adjustment in auditorynerve and cochlear nuclei, J. Neurophysiol., 53:940–958.

    PubMed  CAS  Google Scholar 

  • Glendenning, K.K. and Baker, B.N., 1988, Neuroanatomical distribution of receptors for three potential inhibitory neurotransmitters in the brainstem auditory nuclei of the cat, J. Comp. Neurol., 275:288–308.

    Article  PubMed  CAS  Google Scholar 

  • Godfrey, D., Parli, J., Dunn, J. and Ross, C., 1988, Microchemistry of the cochlear nucleus and superior olivary complex, In: “Auditory Pathway Structure and function,” J. Syka and R.B. Masterton, eds., Plenum Press, New York, pp. 107–121.

    Chapter  Google Scholar 

  • Godfrey, D.A., Carter, J.A., Lowry, O.H., and Matschinsky, F.M., 1978, Distribution of gamma-aminobutyric acid, glycine, glutamate and aspartate in the cochlear nucleus of the rat, J. Histochem. and Cytochem., 26:118–126.

    Article  CAS  Google Scholar 

  • Goldberg, J.M. and Brownell, W.E., 1973, Discharge characteristics of neurons in anteroventral and dorsal cochlear nuclei of cat, Brain Res., 64:35–54.

    Article  PubMed  CAS  Google Scholar 

  • Havey, D.C. and Caspary, D.M., 1980. A Simple technique for constructing “piggy-back” multibarrel microelectrodes, Electroencephalograph. Clin. Neurophysiol., 48:249–251.

    Article  CAS  Google Scholar 

  • Helfert, R.H., Snead, C.R. and Altschuler, R.A., 1991, The ascending auditory pathways, in: “Neurobiology of Hearing: The Central Auditory System,” R.A. Altschuler, R.P. Bobbin, B.M. Clopton, and D.W. Hoffman eds., Raven Press, New York, pp. 1–26.

    Google Scholar 

  • Juiz, J., Helfert, R., Wenthold, R., De Blas, A., and Altschuler, R., 1989, Immunocytochemical localization of the GABAA/benzodiazepine receptor in the guinea pig cochlear nucleus: evidence for receptor localization heterogeneity, Brain Res., 504:173–179.

    Article  PubMed  CAS  Google Scholar 

  • Juiz, J.M., Helfert, R.H., Bonneau, J.M., Wenthold, R.J., and Altschuler, R. A., 1990, Synaptic terminals and cell bodies immunoreactive for glycine or co-containing glycine and GABA immunoreactivities in the cochlear nucleus of the guinea pig: an ultrastructural immunogold study, (submitted).

    Google Scholar 

  • Kiang, N.Y.-S., 1975, Stimulus representation in the discharge patterns of auditory neurons, in: “The Nervous System. Human Communication and Its Disorders”, D.B. Tower, ed., Raven Press, New York, pp. 81–96.

    Google Scholar 

  • Lenn, N.J. and Reese, T.S., 1966, Fine structure of nerve endings in the nucleus of the trapezoid body and the ventral cochlear nucleus, Am. J. Anat., 118:375–390.

    Article  PubMed  CAS  Google Scholar 

  • Lorente de No, R., 1981, “The Primary Acoustic Nuclei”, Raven Press, New York.

    Google Scholar 

  • Martin, M. and Dickson, J.W., 1983, Lateral inhibition in the anteroventral cochlear nucleus of the cat: A microiontophoretic study, Hearing Res., 9:35–41.

    Article  CAS  Google Scholar 

  • Martin, M.R., 1980, The effects of iontophoretically applied antagonists on auditory nerve and amino acid evoked excitation of anteroventral cochlear nucleus neurons, Neuropharmacol., 19:519–528.

    Article  CAS  Google Scholar 

  • May, BJ. and Sachs, M.B., 1991, Unit classification and dynamic range properties of neurons in the ventral cochlear nucleus of awake and behaving cats, ARO Abstr., 14:142.

    Google Scholar 

  • Møller, A.R., 1972, Coding of amplitude and frequency modulated sounds in the cochlear nucleus of the rat, Acta Physiol. Scand. (Stockh), 86:223–238.

    Article  Google Scholar 

  • Møller, A.R., 1974, Dynamic properties of cochlear nucleus units in response to excitatory and inhibitory tones, in: “Facts and Models in Hearing”, E. Zwicker and E. Terhardt, eds., Springer-Verlag pp. 227-240.

    Google Scholar 

  • Møller, A.R., 1976, Dynamic properties of excitation and two-tone inhibition in the cochlear nucleus studied using amplitude tones, Exp. Brain Res., 25:307–321.

    Article  PubMed  Google Scholar 

  • Moore, J.K. and Moore, R.Y., 1987, Glutamic acid decarboxylase-like activity in brainstem auditory nuclei, J. Comp. Neurol., 260:157–174.

    Article  PubMed  CAS  Google Scholar 

  • Morest, D.K., Hutson, K.A. and Kwok, S., 1990, Cytoarchitectonic atlas of the cochlear nucleus of the chinchilla, Chinchilla laniger, J. Comp. Neurol., 300:230–248.

    Article  CAS  Google Scholar 

  • Mugnaini, E. and Oertel, W.H., 1985, An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immunohistochemistry, in: “Handbook of Chemical Neuroanatomy: GABA and Neuropeptides in the CNS”, A. Bjorklund and T. Hokfelt, eds., Elsevier Science Publishers, Amsterdam/New York, pp. 436–608.

    Google Scholar 

  • Narins, P.M., 1987 Coding of signals in noise by amphibian auditory nerve fibers, Hearing Res., 26:145–154.

    Article  CAS  Google Scholar 

  • Osen, K.K., 1969, Cytoarchitecture of the cochlear nuclei in the cat, J. Comp. Neurol., 136:453–484.

    Article  PubMed  CAS  Google Scholar 

  • Osen, K.K., Ottersen, O.P., and Storm-Mathisen, J., 1990, Colocalization of glycine-like and GABA-like immunoreactivities. A semiquantitative study of individual neurons in the dorsal cochlear nucleus of cat, in: “Glycine Neurotransmission”, O.P. Ottersen and J. Storm-Mathisen, eds., John Wiley and Sons, New York, pp. 417–452.

    Google Scholar 

  • Ostapoff, E.-M., Morest, D.K., and Potashner, S.J., 1990, Uptake and retrograde transport of [3H]GABA from the cochlear nucleus to the superior olive in the guinea pig, J. Chem. Neuroanat., 3:285–295.

    PubMed  CAS  Google Scholar 

  • Palmer, A.R. and Evans, E.F., 1982, Intensity coding in the auditory periphery of the cat: Responses of cochlear nerve and cochlear nucleus neurons to signals in the presence of bandstop masking noise, Hearing Res., 7:305–323.

    Article  CAS  Google Scholar 

  • Pfeiffer, R.R., 1966, Classification of response patterns of spike discharges for units in the cochlear nucleus: tone-burst stimulation, Exp. Brain Res., 1:220–235.

    Article  PubMed  CAS  Google Scholar 

  • Potashner, S.J., Lindberg, N. and Morest, D.K., 1985, Uptake and release of gamma-aminobutyric acid in the guinea pig cochlear nucleus after axotomy of cochlear and centrifugal fibers, J. Neurochem., 45:1558–1566.

    Article  PubMed  CAS  Google Scholar 

  • Rhode, W.S., Geisler, CD. and Kennedy, D.T., 1978, Auditory nerve fiber responses to wide-band noise and tone combinations, J. Neurophysiol., 41:692–704.

    PubMed  CAS  Google Scholar 

  • Rhode, W.S. and Kettner, R.E., 1987, Physiological study of neurons in the dorsal and posteroventral cochlear nucleus of the unanesthetized cat, J. Neurophysiol., 57(2):414–442.

    PubMed  CAS  Google Scholar 

  • Rhode, W.S., Oertel, D. and Smith, P.H., 1983, Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat ventral cochlear nucleus, J. Comp. Neurol., 213:448–463.

    Article  PubMed  CAS  Google Scholar 

  • Ryugo, D.K. and Fekete, D.M., 1982, Morphology of primary axosomatic endings in the anteroventral cochlear nucleus of the cat: A study of the endbulbs of Held, J. Comp. Neurol., 210:239–257.

    Article  PubMed  CAS  Google Scholar 

  • Saint Marie, R.L., Morest, D.K., and Brandon, C.J., 1989, The form and distribution of GABAergic synapses on the principal cell types of the ventral cochlear nucleus of the cat, Hearing Res., 42:97–112.

    Article  CAS  Google Scholar 

  • Sanes, D.H., Wooten, W.A., Geary, G.F. and Rubel, E.W., 1987, Quantitative distribution of the glycine receptor in the auditory brain stem of the gerbil, J. Neurosci., 7(11):3793–3802.

    PubMed  CAS  Google Scholar 

  • Schulz, D.W., and MacDonald, R.L., 1981, Barbiturate enhancement of GABA-mediated inhibition and activation of chloride ion conductance: Correlation with anticonvulsant and anesthetic actions, Brain Res., 209:177–188.

    Article  PubMed  CAS  Google Scholar 

  • Shofner, W.P. and Young, E.D., 1985, Excitatory/inhibitory response types in the cochlear nucleus: Relationships to discharge patterns and responses to electrical stimulation of the auditory nerve, J. Neurophysiol., 54:917–939.

    PubMed  CAS  Google Scholar 

  • Shore, S.E., Helfert, R.H., Beldsoe, Jr., S.C., Altschuler, R.A. and Godfrey, D.A., 1991, Descending projections to the dorsal and ventral divisions of the cochlear nucleus in guinea pig, Hearing Res., 52:255–268.

    Article  CAS  Google Scholar 

  • Spangler, K.M., Cant, N.B., Henkel, C.K., Farley, G.R. and Wart, W.B., 1987, Descending projections from the superior olivary complex to the cochlear nucleus of the cat, J. Comp. Neurol., 259:452–465.

    Article  PubMed  CAS  Google Scholar 

  • Staatz-Benson, C. and Potashner, S.J., 1987, Uptake and release of glycine in the guinea pig cochlear nucleus, J. Neurochem., 49:128–137.

    Article  PubMed  CAS  Google Scholar 

  • Staatz-Benson, C. and Potashner, S.J., 1988, Uptake and release of glycine in the guinea pig cochlear nucleus after axotomy of afferent or centrifugal fibers, J. Neurochem., 51:370–379.

    Article  PubMed  CAS  Google Scholar 

  • Tachibana, M. and Kuriyama, K., 1974, Gamma-aminobutyric acid in the lower auditory pathway of the guinea pig, Brain Res., 69:370–374.

    Article  PubMed  CAS  Google Scholar 

  • Warr, W.B., 1966, Fiber degeneration following lesions in the anterior ventral cochlear nucleus of the cat, Exp. Neurol., 14:453–474.

    Article  PubMed  CAS  Google Scholar 

  • Wenthold, R.J., 1979, Release of endogenous glutamic acid, aspartic acid, and GABA from cochlear nucleus slices, Brain Res., 162:338–343.

    Article  PubMed  CAS  Google Scholar 

  • Wenthold, R.J., Parakkal, M.H., Oberdorfer, M.D. and Altschuler, R.A., 1988, Glycine receptor immunoreactivity in the ventral cochlear nucleus of the guinea pig, J. Comp. Neurol., 276:423–435.

    Article  PubMed  CAS  Google Scholar 

  • Wickesberg, R.E. and Oertel, D., 1988, Tonotopic projection from the dorsal to the anteroventral cochlear nucleus of mice, J. Comp. Neurol., 268:389–399.

    Article  PubMed  CAS  Google Scholar 

  • Wickesberg, R.E. and Oertel, D., 1990, Delayed, frequency-specific inhibition in the cochlear nuclei of mice: A mechanism for monaural echo suppression, J. Neurosci., 10(5): 1762–1768.

    PubMed  CAS  Google Scholar 

  • Wu, S.H. and Oertel, D., 1986, Inhibitory circuitry in the ventral cochlear nucleus is probably mediated by glycine, J. Neurosci., 6:2691–2706.

    PubMed  CAS  Google Scholar 

  • Young, E.D., 1984, Response characteristics of neurons of the cochlear nuclei, in: “Hearing Science”, C. Berlin, ed., College-Hill Press, San Diego, CA, pp. 423–459.

    Google Scholar 

  • Young, E.D., Costalupes, J.A., and Gibson, D.J., 1983, Representation of acoustic stimuli in the presence of background sounds: adaptation in the auditory nerve and cochlear nucleus, in: “Hearing-Physiological Basis and Psychophysics”, R. Klinke and R. Hartman, eds., Springer-Verlag, New York, pp. 119–127.

    Google Scholar 

  • Young, E.D., Shofner, W.P., White, J.A., Robert, J.-M., and Voigt, H.F., 1988, Response properties of cochlear nucleus neurons in relationship to physiological mechanisms, in: “Auditory Function: Neurobiological Bases of Hearing”, G.M. Edelman, W.E. Gall, and W.M. Cowan, eds., John Wiley and Sons, New York, pp. 277–312.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Caspary, D.M., Palombi, P.S., Backoff, P.M., Helfert, R.H., Finlayson, P.G. (1993). GABA and Glycine Inputs Control Discharge Rate within the Excitatory Response Area of Primary-Like and Phase-Locked AVCN Neurons. In: Merchán, M.A., Juiz, J.M., Godfrey, D.A., Mugnaini, E. (eds) The Mammalian Cochlear Nuclei. NATO ASI series, vol 239. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2932-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2932-3_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6273-9

  • Online ISBN: 978-1-4615-2932-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics