Skip to main content

Glycine and GABA: Transmitter Candidates of Projections Descending to the Cochlear Nucleus

  • Chapter
The Mammalian Cochlear Nuclei

Part of the book series: NATO ASI series ((NSSA,volume 239))

Abstract

Acoustic information, encoded in the cochlea and conveyed to the cochlear nucleus (CN) by cochlear nerve fibers, is processed by cell groups in the CN. Inhibitory neurotransmission appears to play a prominent role at this level of auditory processing (Brugge and Geisler,’ 78; Voight and Young,’ 80; Caspary et al., this volume). Information has been emerging recently with regard to the location and transmitters of the inhibitory neurons which synapse in the CN. These neurons may originate in other brain stem nuclei that project to the CN, or could lie within the CN itself (Saint Marie et al.,’ 91, this volume; Oertel and Wickesberg, this volume). These inhibitory projections probably use the amino acid transmitters, glycine and GABA at their synapses in the CN (Whitfield and Comis,’ 66; Tachibana and Kuriyama,’ 74; Fex and Wenthold,’ 76; Fisher and Davies,’ 76; Godfrey et al,’ 77,’ 78; Caspary et al,’ 79; Wenthold,’ 79; Martin et al,’ 82).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J.C. and Warr, W.B., 1976, Origins of axons of the cat’s acoustic striae determined by injection of horseradish peroxidase into severed tracts, J. Comp, Neurol., 170:107–122.

    Article  CAS  Google Scholar 

  • Benson, C.G. and Potashner, S.J., 1990, Retrograde transport of [3H]Glycine from the cochlear nucleus to the superior olive in the guinea pig, J. Comp. Neurol., 296:415–426.

    Article  PubMed  CAS  Google Scholar 

  • Blasberg, R.G., 1968, Specificity of cerebral amino acid transport: A kinetic analysis, in: “Progress in Brain Research, Vol. 29”, Lajtha A. and Ford D.H., eds., pp. 245–256, Elsevier, Amsterdam.

    Google Scholar 

  • Blasberg, R.G. and Lajtha A., 1965, Substrate specificity of steady-state amino acid transport in mouse brain slices, Arch. Biochem. Biophys., 112:361–377.

    Article  CAS  Google Scholar 

  • Blaustein, M.P., Johnson E. M. and Needleman P., 1972, Calcium-dependent norepinephrine release from presynaptic nerve endings in vitro, Proc. Nat. Acad. Sci. USA, 69:2237–2240.

    Article  PubMed  CAS  Google Scholar 

  • Brugge, J.F. and Geisler, C.D., 1978, Auditory mechanisms of the lower brainstem, Ann. Rev. Neurosci., 1:63–94.

    Article  Google Scholar 

  • Cant, N.B. and Gaston, K.C., 1982, Pathways connecting the right and left cochlear nuclei, J. Comp. Neurol., 212:313–326.

    Article  PubMed  CAS  Google Scholar 

  • Caspary, D.M., Havey, D.C. and Faingold, C.L., 1979, Effects of microiontophoretically applied glycine and GABA on neuronal response patterns in the cochlear nuclei, Brain Res., 172:179–185.

    Article  PubMed  CAS  Google Scholar 

  • Cuenod, M., Bagnoli, P., Beaudet, A., Rustioni, A., Wiklund, L. and Streit, P., 1982, Transmitter-specific retrograde labelling of neurons, in: “Cytochemical Methods in Neuroanatomy”, Chan-Palay V. and Palay S.L., eds., A.R. Liss, Inc., New York, pp. 17–44.

    Google Scholar 

  • Davidoff, R.A. and Adair, R., 1976, GABA and glycine transport in frog CNS: High affinity uptake and potassium-evoked release in vitro, Brain Res., 118:403–415.

    Article  PubMed  CAS  Google Scholar 

  • Elverland, H.H., 1977, Descending connections between the superior olivary and cochlear nucleus complexes in the cat studied by autoradiographic and horseradish peroxidase methods, Exp. Brain Res., 27:397–412.

    Article  PubMed  CAS  Google Scholar 

  • Fex, J. and Wenthold, R.J., 1976, Choline acetyltransferase, glutamate decarboxylase, and tyrosine hydroxylase in the cochlea and cochlear nucleus of the guinea pig, Brain Res., 109:575–585.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, S.K. and Davies, W.E., 1976, GABA and its related enzymes in the lower auditory system of the guinea pig, J. Neurochem., 27:1145–1155.

    Article  PubMed  CAS  Google Scholar 

  • Frostholm, A. and Rotter, A., 1985, Glycine receptor distribution in mouse CNS:Autoradiographic localization of binding sites, Brain Res. Bull., 15:473–486.

    Article  PubMed  Google Scholar 

  • Ginzberg, R.D. and Morest, D.K., 1983, A study of cochlear innervation in the young cat with the Golgi method, Hearing Res., 10:227–246.

    Article  CAS  Google Scholar 

  • Godfrey, D.A., Carter J., Berger S.J., Lowry, O.H. and Matschinsky, F., 1977, Quantitative histochemical mapping of candidate transmitter amino acids in cat cochlear nucleus, J. Histochem. Cytochem., 25:417–431.

    Article  PubMed  CAS  Google Scholar 

  • Godfrey, D.A., Carter, J., Lowry, O.H. and Matschinsky, F.M., 1978, Distribution of gamma-aminobutyric acid, glycine, glutamate and aspartate in the cochlear nucleus of the rat, J. Histochem. Cytochem., 26:118–126.

    Article  PubMed  CAS  Google Scholar 

  • Gundlach, A.L. and Beart, P.M., 1982, Neurochemical studies of the mesolimbic dopaminergic pathway: Glycinergic mechanisms and glycinergic-dopaminergic interactions in the rat ventral tegmentum, J. Neurochem., 38:574–581.

    Article  PubMed  CAS  Google Scholar 

  • Hökfelt, T. and Ljungdahl, A., 1971, Light and electron microscopic autoradiography on spinal cord slices after incubation with labelled glycine, Brain Res., 32:189–194.

    Article  PubMed  Google Scholar 

  • Hökfelt, T. and Ljungdahl, A., 1975, Uptake mechanisms as a basis for the histochemical identification and tracing of transmitter-specific neuron populations, in: “The use of axonal transport for studies of neuronal connectivity”, Cowan W.M. and Cuenod M., eds., Elsevier, Amsterdam, pp. 249–305.

    Google Scholar 

  • Iversen, L.L., 1978, Identification of transmitter-speeifie neurons in the CNS by autoradiography, in: “Handbook of Psychopharmacology, Vol. 9”, Iversen L.L., Iversen S.D. and Snyder S.H., eds., Plenum Press, New York, pp. 41–68.

    Google Scholar 

  • Iversen, L.L. and Bloom, F.E., 1972, Studies of the uptake of 3H-GABA and 3H-glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography, Brain Res., 41:131–143.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, G.A.R. and Iversen, L.L., 1971, Glycine uptake in rat central nervous system slices and homogenates: Evidence for different uptake systems in spinal cord and cerebral cortex, J. Neurochem., 18:1951–1961.

    Article  PubMed  CAS  Google Scholar 

  • Kane, E.S., 1976, Descending inputs to caudal cochlear nucleus in cats: A horseradish peroxidase (HRP) study, Amer. J. Anat., 146:433–441.

    Article  PubMed  CAS  Google Scholar 

  • Kane, E.S., 1977a, Descending inputs to the dorsal cochlear nucleus of the cat: An electron microscopic study, J. Neurocytol., 6:587–605.

    Article  Google Scholar 

  • Kane, E.S., 1977b, Descending inputs to the octopus cell area of the cat cochlear nucleus: An electron microscopic study, J. Comp. Neurol., 173:337–354.

    Article  PubMed  CAS  Google Scholar 

  • Kane, E.S. and Conlee, J.W., 1979, Descending inputs to the caudal cochlear nucleus of the cat: degeneration and autoradiographic studies, J. Comp Neurol., 187:759–784.

    Article  PubMed  CAS  Google Scholar 

  • Kane, E.S. and Finn, R.C., 1977, Descending and intrinsic inputs to the cat caudal cochlear nucleus: A horseradish peroxidase study, Neuroscience, 2:897–912.

    Article  Google Scholar 

  • Lajtha, A., 1967, Transport as control mechanism of cerebral metabolite levels, in: “Progress in Brain Research, Vol. 29”, Lajtha A. and Ford D. H., eds., Elsevier, Amsterdam, pp. 201–216.

    Google Scholar 

  • Logan, W.L. and Snyder, S.H., 1972, High affinity uptake systems for glycine, glutamic and aspartic acids in synaptosomes of rat central nervous tissues, Brain Res., 42:413–431.

    Article  PubMed  CAS  Google Scholar 

  • Martin, M.R., Dickson, J.W. and Fex, J., 1982, Bicuculline, strychnine, and depressant amino acid responses in the anteroventral cochlear nucleus of the cat, Neuropharmacology, 21:201–207.

    Article  PubMed  CAS  Google Scholar 

  • Matus, A.I. and Dennison, M.E., 1971, Autoradiographic localization of tritiated glycine at “flat-vesicle” synapses in spinal cord, Brain Res., 32:195.

    Article  PubMed  CAS  Google Scholar 

  • Neal, M.J. and Pickles, H.G., 1969, Uptake of 14C-glycine by spinal cord, Nature, 222:679–680.

    Article  PubMed  CAS  Google Scholar 

  • Neame, K.D., 1968, A comparison of the transport systems for amino acids in brain, kidney and tumor, Prog. in Brain Res., 29:185–196.

    Article  CAS  Google Scholar 

  • Oliver, D.L., Potashner, S.J., Jones, D.R. and Morest, D.K., 1983, Selective labelling of spiral ganglion and granule cells with D-aspartate in the auditory system of cat and guinea pig, J. Neurosci., 3:455–472.

    PubMed  CAS  Google Scholar 

  • Orrego, F., 1979, Criteria for identification of central neurotransmitters and their application to studies with nervous tissue preparations in vitro, Neuroscience, 4:1037–1057.

    Article  PubMed  CAS  Google Scholar 

  • Osen, K.K. and Roth, K., 1969, Histochemical localization of esterases in the cochlear nuclei of the cat with notes on the origin of acetyl-Cholinesterase-positive afférents and the superior olive, Brain Res., 16:165–185.

    Article  PubMed  CAS  Google Scholar 

  • Ostapoff, E.-M., Morest, D.K. and Potashner, S.J., 1990, Uptake and retrograde transport of [3H]GABA from the cochlear nucleus to the superior olive in the guinea pig, J. Chem. Neuroanat., 3:285–295.

    PubMed  CAS  Google Scholar 

  • Potashner, S.J., 1978, The effects of tetrodotoxin, calcium and magnesium on the release of amino acids from slices of guinea pig cerebral cortex, J. Neurochem., 31:187–195.

    Article  PubMed  CAS  Google Scholar 

  • Potashner, S.J., Lindberg, N. and Morest, D.K., 1985, Uptake and release of GABA in the guinea pig cochlear nucleus after axotomy of cochlear and centrifugal fibers, J. Neurochem., 45:1558–1566.

    Article  PubMed  CAS  Google Scholar 

  • Potashner, S.J. and Tran, P.L., 1984, Decreased uptake and release of D-aspartate in the guinea pig spinal cord after dorsal root section, J. Neurochem., 42:1135–1144.

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen, G.L., 1967, Efferent connections of the cochlear nucleus, in: “Sensorineural Hearing Processes and Disorders”, Graham A. B., ed., Little Brown, Boston, pp. 61–75.

    Google Scholar 

  • Rubin, R.P., 1974, “Calcium and the secretory process”, Plenum Press, New York.

    Book  Google Scholar 

  • Saint Marie, R.L., Morest, D.K. and Brandon, C.J., 1989, The form and distribution of GABAergic synapses on the principal cell types of the ventral cochlear nucleus of the cat, Hearing Res., 42:97–112.

    Article  CAS  Google Scholar 

  • Saint Marie, R.L., Ostapoff, E.M., Benson, C.G. and Morest, D.K., 1991, Glycine immunoreactive projections from the dorsal to the anteroventral cochlear nucleus, Hearing Res., 51:11–28.

    Article  CAS  Google Scholar 

  • Sellstrom, A. and Hamberger, A., 1977, The uptake and release of putative amino acid transmitters from neurons and glia, Brain Res., 119:189–198.

    Article  PubMed  CAS  Google Scholar 

  • Spangler, K.M., Cant, N.B., Henkel, C.K., Farley, G.R. and Warr, W.B., 1987, Descending projections from the superior olivary complex to the cochlear nucleus of the cat, J. Comp. Neurol., 259:452–465.

    Article  PubMed  CAS  Google Scholar 

  • Staatz-Benson, C. and Potashner, S.J., 1987, Uptake and release of glycine in the guinea pig cochlear nucleus, J. Neurochem., 49:128–137.

    Article  PubMed  CAS  Google Scholar 

  • Staatz-Benson, C. and Potashner, S.J., 1988, Uptake and release of glycine in the guinea pig cochlear nucleus after axotomy of afferent or centrifugal fibers, J. Neurochem., 51:370–379.

    Article  PubMed  CAS  Google Scholar 

  • Streit, P., 1980, Selective retrograde labelling indicating the transmitter of neuronal pathways, J. Comp. Neurol., 191:429–463.

    Article  PubMed  CAS  Google Scholar 

  • Tachibana, M. and Kuriyama, K., 1974, Gamma-aminobutyric acid in the lower auditory pathway of the guinea pig, Brain Res., 69:370–374.

    Article  PubMed  CAS  Google Scholar 

  • van Noort, J., 1969, The anatomical basis for frequency analysis in the cochlear nucleus complex, Psychiat. Neurolg. Neurochir., 72:109–114.

    Google Scholar 

  • Voight, H.F. and Young, E.D., 1980, Evidence of inhibitory interactions between neurons in dorsal cochlear nucleus, J. Neurophysiol., 44:76–96.

    Google Scholar 

  • Wenthold, R.J., 1979, Release of endogenous glutamic acid, aspartic acid, and GABA from cochlear nucleus slices, Brain Res., 162:338–343.

    Article  PubMed  CAS  Google Scholar 

  • Wenthold, R.J., Betz, H., Reeks, K.A., Parakkal, M.H. and Altschuler, R.A., 1985, Localization of glycinergic synapses in the cochlear nucleus and superior olivary complex with monoclonal antibodies specific for the glycine receptor, Neurosci. Abstr., 11:1048.

    Google Scholar 

  • Werman, R., 1966, Criteria for identification of a central nervous system transmitter, Comp. Biochem. Physiol., 18:745–766.

    Article  PubMed  CAS  Google Scholar 

  • Whitfield, I.C. and Comis, S.D., 1966, The role of inhibition in information transfer: The interaction of centrifugal and centripetal stimulation on neurones of the cochlear nucleus, “Final report II AF EOAR” (U.S. Air Force), 63-115.

    Google Scholar 

  • Wiederhold, M.L., 1986, Physiology of the olivocochlear system, in: “Neurobiology of Hearing: The Cochlea”, Altschuler, R.A., Hoffman, D.W. and Bobbin, R.P., eds., Raven Press, New York, pp. 349–370.

    Google Scholar 

  • Winter, I.M., Robertson, D. and Cole, K.S., 1989, Descending projections from auditory brainstem nuclei to the cochlea and cochlear nucleus of the guinea pig, J. Comp. Neurol., 280:143–147.

    Article  PubMed  CAS  Google Scholar 

  • Young, A.B. and MacDonald, R.L., 1983, Glycine as a spinal cord neurotransmitter, in: “Handbook of the spinal cord”, Davidoff R.A., ed,, Marcel Decker, New York, pp. 1–43.

    Google Scholar 

  • Zarbin, M.A., Wamsley, J.K. and Kuhar, M.J., 1981, Glycine receptor: Light microscopic localization with 3H-strychnine, J. Neurosci., 1:532–547.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Potashner, S.J., Benson, C.G., Ostapoff, EM., Lindberg, N., Morest, D.K. (1993). Glycine and GABA: Transmitter Candidates of Projections Descending to the Cochlear Nucleus. In: Merchán, M.A., Juiz, J.M., Godfrey, D.A., Mugnaini, E. (eds) The Mammalian Cochlear Nuclei. NATO ASI series, vol 239. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2932-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2932-3_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6273-9

  • Online ISBN: 978-1-4615-2932-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics