Phagocytosis of Antigens by Langerhans Cells

  • Caetano Reis e Sousa
  • Jonathan M. Austyn
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 329)


Unlike B cells, T cells do not recognise antigen in its native form. Instead, T cell receptors have evolved to recognise peptide fragments in association with MHC molecules on cell surfaces. MHC molecules of the class I type normally associate with peptides derived from endogenous antigens, such as cytosolic proteins, and are ideally placed for presenting viral antigens in infected cells1. MHC class II molecules (Ia) are primarily involved in presenting peptides derived from exogenous antigens and are restricted to a more limited number of cell types such as the dendritic cell2.


Dendritic Cell Cutaneous Leishmaniasis Birbeck Granule Afferent Lymph Phagocytic Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.J. Monaco, A molecular model of MHC class-I-restricted antigen processing, Immunol. Today 13: 173 (1992).PubMedCrossRefGoogle Scholar
  2. 2.
    J J. Neefjes and H.L. Ploegh, Intracellular transport of MHC class II molecules, Immunol. Today 13: 179 (1992).PubMedCrossRefGoogle Scholar
  3. 3.
    R. M. Steinman, The dendritic cell system and its role in immunogenicity, Annu. Rev. Immunol. 9: 271 (1991).PubMedCrossRefGoogle Scholar
  4. 4.
    K. Inaba et al, Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ, J. Exp. Med. 172: 631 (1990).PubMedCrossRefGoogle Scholar
  5. 5.
    R.M. Steinman and Z. Cohn, Identification of a novel cell type in peripheral lymphoid organs of mice: II, Functional properties in vitro, J. Exp. Med. 139: 380 (1974).PubMedCrossRefGoogle Scholar
  6. 6.
    N. Romani et al, Presentation of exogenous protein antigens by dendritic cells to T cell clones. Intact protein is presented best by immature, epidermal Langerhans cells, J. Exp. Med. 169: 1169 (1989).PubMedCrossRefGoogle Scholar
  7. 7.
    M.T. Crowley et al, Use of the fluorescence activated cell sorter to enrich dendritic cells from mouse spleen, J. Immunol. Methods 133: 55 (1990).PubMedCrossRefGoogle Scholar
  8. 8.
    G. Girolomoni et al, Freshly isolated spleen dendritic cells and epidermal Langerhans cells undergo similar phenotypic and functional changes during short-term culture, J. Immunol. 145: 2820 (1990).PubMedGoogle Scholar
  9. 9.
    T. Sornasse et al, Antigen-pulsed dendritic cells can efficiently induce an antibody response in vivo, J. Exp. Med. 175: 15 (1992).PubMedCrossRefGoogle Scholar
  10. 10.
    M. Crowley, K. Inaba and R.M. Steinman, Dendritic cells are the principal cells in mouse spleen bearing immunogenic fragments of foreign proteins, J. Exp. Med. 172: 383 (1990).PubMedCrossRefGoogle Scholar
  11. 11.
    P.M. Kaye, B.M. Chain and M. Feldmann, Non-phagocytic dendritic cells are effective accessory cells for anti-mycobacterial responses in vitro, J. Immunol. 134: 1930 (1985).PubMedGoogle Scholar
  12. 12.
    S. Nair et al, Soluble proteins delivered to dendritic cells via pH-sensitive liposomes induce primary cytotoxic T lymphocyte responses in vitro, J. Exp. Med. 175: 609 (1992).PubMedCrossRefGoogle Scholar
  13. 13.
    B. Stockinger, Capacity of antigen uptake by B cells, fibroblasts or macrophages determines efficiency of presentation of a soluble self antigen (C5) to T lymphocytes, Eur. J. Immunol. 22: 1271 (1992).PubMedCrossRefGoogle Scholar
  14. 14.
    G. Schuler and R.M. Steinman, Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro, J. Exp. Med. 161: 526 (1985).PubMedCrossRefGoogle Scholar
  15. 15.
    N. Romani et al, Cultured human Langerhans cells resemble lymphoid dendritic cells in phenotype and function, J. Invest. Dermatol 93: 600 (1989).PubMedCrossRefGoogle Scholar
  16. 16.
    J.M. Austyn and C.P. Larsen, Migration patterns of dendritic leukocytes: implications for transplantation, Transplantation 48: 1 (1990).CrossRefGoogle Scholar
  17. 17.
    H. Stössel et al, Disappearance of certain acidic organelles (endosomes and Langerhans cell granules) accompanies loss of antigen processing capacity upon culture of epidermal Langerhans cells, J. Exp. Med. 172: 1471 (1990).PubMedCrossRefGoogle Scholar
  18. 18.
    G. Girolomoni et al, Vacuolar acidification and bafilomycin-sensitive proton translocating ATPase in human epidermal Langerhans cells, J. Invest. Dermatol. 96: 735 (1991).PubMedCrossRefGoogle Scholar
  19. 19.
    E. Puré et al, Antigen processing by epidermal Langerhans cells correlates with the level of biosynthesis of major histocompatibility complex class II molecules and expression of invariant chain, J. Exp. Med. 172: 1459 (1990).PubMedCrossRefGoogle Scholar
  20. 20.
    W.B. Shelley and L. Juhlin, Langerhans cells form a reticuloendothelial trap for external contact antigen, Nature 261: 46 (1976).PubMedCrossRefGoogle Scholar
  21. 21.
    B. Søeberg, T. Sumerska and B.M. Balfour, The role of the afferent lymph in the induction of contact sensitivty, Adv. Exp. Med. Biol. 66: 191 (1976).PubMedGoogle Scholar
  22. 22.
    B. Søeberg et al, Contact sensitivity in the pig, Int. Arch. Allergy Appl. Immunol. 57: 114 (1978).PubMedCrossRefGoogle Scholar
  23. 23.
    G.C. Mudde et al, IgE: an immunoglobulin specialized in antigen capture?, Immunol. Today 11: 440 (1990).PubMedCrossRefGoogle Scholar
  24. 24.
    I. Silberberg-Sinakin et al, Antigen-bearing Langerhans cells in skin, dermal lymphatics and in lymph nodes, Cell. Immunol. 25: 137 (1976).PubMedCrossRefGoogle Scholar
  25. 25.
    S.E. Macatonia, A.J. Edwards and S.C. Knight, Dendritic cells and the initiation of contact sensitivity to fluorescein isothiocyanate, Immunology 59: 509 (1986).PubMedGoogle Scholar
  26. 26.
    S.E. Macatonia et al, Localization of antigen on lymph node dendritic cells after exposure to the contact sensitizer fluorescein isothiocyanate. Functional and morphological studies, J. Exp. Med. 166: 1654 (1987).PubMedCrossRefGoogle Scholar
  27. 27.
    R. Bujdoso et al, Characterization of sheep afferent lymph dendritic cells and their role in antigen carriage, J. Exp. Med. 170: 1285 (1989).PubMedCrossRefGoogle Scholar
  28. 28.
    K. Wolff and E. Schreiner, Uptake, intracellular transport and degradation of exogenous protein by Langerhans cells, J. Invest. Dermatol. 54: 37 (1970).PubMedCrossRefGoogle Scholar
  29. 29.
    M.B. Parr, L. Kepple and E.L. Parr, Antigen recognition in the female reproductive tract. II. Endocytosis of horseradish peroxidase by Langerhans cells in murine vaginal epithelium, Biol. Reprod. 45: 261 (1991).PubMedCrossRefGoogle Scholar
  30. 30.
    S. Barbey et al, Skin Langerhans cells fail to trap bacterial antigen in non-sensitized guinea-pig, Ann. Immunol. (Paris) 191: 111 (1981).Google Scholar
  31. 31.
    J.M. Rhodes et al, Comparison of antigen uptake by peritoneal macrophages and veiled cells from the thoracic duct using isotope-, FITC-, or gold-labelled antigen, Immunology 68: 403 (1989).PubMedGoogle Scholar
  32. 32.
    J.G. Hall and D. Robertson, Phagocytosis, in vivo, of immune complexes by dendritic cells in the lymph of sheep, Int. Arch. Allergy Appl. Immunol. 73: 155 (1984).PubMedCrossRefGoogle Scholar
  33. 33.
    R. Barfoot et al, Some properties of dendritic macrophages from peripheral lymph, Immunol. 68: 233 (1989).Google Scholar
  34. 34.
    G.D. Harkiss, J. Hopkins and I. McConnell, Uptake of antigen by afferent lymph dendritic cells mediated by antibody, Eur. J. Immunol. 20: 2367 (1990).PubMedCrossRefGoogle Scholar
  35. 35.
    M. Ishii et al, Sequential production of Birbeck granules through adsorptive pinocytosis, J. Invest. Dermatol. 82: 28 (1984).PubMedCrossRefGoogle Scholar
  36. 36.
    M. Takigawa et al, The Langerhans cell granule is an adsorptive endocytic organelle, J. Invest. Dermatol. 85: 12 (1985).PubMedCrossRefGoogle Scholar
  37. 37.
    D. Hanau et al, Human epidermal Langerhans cells internalize by receptor-mediated endocytosis T6 (CD1 “NA1/34”) surface antigen. Birbeck granules are involved in the intracellular traffic of the T6 antigen, J. Invest. Dermatol. 89: 172 (1987).PubMedCrossRefGoogle Scholar
  38. 38.
    D. Hanau et al, Human epidermal Langerhans cells cointernalize by receptor-mediated endocytosis “nonclassical” major histocompatibility complex class I molecules (T6 antigens) and class II molecules (HLA-DR antigens), Proc. Natl. Acad. Sci. USA 84: 2901 (1987).PubMedCrossRefGoogle Scholar
  39. 39.
    A. Ray et al, Reappearance of CDla antigenic sites after endocytosis on human Langerhans cells evidenced by immunogoldrelabeling, J. Invest. Dermatol. 92: 217 (1989).PubMedCrossRefGoogle Scholar
  40. 40.
    C.W. Pugh, G.G. MacPherson and H.W. Steer, Characterization of non-lymphoid cells derived from rat peripheral lymph, J. Exp. Med. 157: (1983).Google Scholar
  41. 41.
    D. Landry et al, Human thymic dendritic cells. Characterization, isolation and functional assays, Immunology 65: 135 (1988).PubMedGoogle Scholar
  42. 42.
    D.N. Hart and J.L. McKenzie, Isolation and characterization of human tonsil dendritic cells, J. Exp. Med. 168: 157 (1988).PubMedCrossRefGoogle Scholar
  43. 43.
    A.M. Pollard and M.F. Lipscomb, Characterization of murine lung dendritic cells: similarities to Langerhans cells and thymic dendritic cells, J. Exp. Med. 172: 159 (1990).PubMedCrossRefGoogle Scholar
  44. 44.
    W.J. Xia et al, Accessory cells of the lung. II. Ia+ pulmonary dendritic cells display cell surface antigen heterogeneity, Am. J. Respir. Cell Mol. Biol. 5: 276 (1991).PubMedGoogle Scholar
  45. 45.
    L.W. Poulter et al, Parasitism of antigen presenting cells in hyperbacillary leprosy, Clin. Exp. Immunol. 55: 611 (1984).PubMedGoogle Scholar
  46. 46.
    D.R. Katz and G.H. Sunshine, Comparative accessory cell function of Langerhans cells isolated from mouse skin, J. Exp. Pathol. 67: 157 (1986).Google Scholar
  47. 47.
    M.B. Parr, L. Kepple and E.L. Parr, Langerhans cells phagocytose vaginal epithelial cells undergoing apoptosis during the murine estrous cycle, Biol. Reprod. 45: 252 (1991).PubMedCrossRefGoogle Scholar
  48. 48.
    S. Fossum and B. Rolstad, The roles of interdigitating cells and natural killer cells in the rapid rejection of allogeneic lymphocytes, Eur. J. Immunol. 16: 440 (1986).PubMedCrossRefGoogle Scholar
  49. 49.
    S.J. Sung, R.S. Nelson and S.M. Silverstein, Yeast mannans inhibit binding and phagocytosis of zymosan by mouse peritoneal macrophages, J. Cell Biol. 96: 160 (1983).PubMedCrossRefGoogle Scholar
  50. 50.
    J.K. Czop and K.F. Austen, A β-glucan inhibitable receptor on human monocytes: its identity with the phagocytic receptor for particulate activators of the alternative complement pathway, J. Immunol 134: 2588 (1985).PubMedGoogle Scholar
  51. 51.
    R. Ezekowitz et al, Molecular characterization of the human macrophage mannose receptor. demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells, J. Exp. Med. 172: 1785 (1990).PubMedCrossRefGoogle Scholar
  52. 52.
    A. Will et al, Murine epidermal Langerhans cells are potent stimulators of an antigen-specific T cell response to Leishmania major, the cause of cutaneous leishmaniasis, Eur. J. Immunol. 22: 1341 (1992).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Caetano Reis e Sousa
    • 1
  • Jonathan M. Austyn
    • 1
  1. 1.Nuffield Department of SurgeryUniversity of Oxford John Radcliffe HospitalHeadingtonUK

Personalised recommendations