Costimulating Factors and Signals Relevant for Antigen Presenting Cell Function

  • Marc K. Jenkins
  • Dimuthu R. DeSilva
  • Julia G. Johnson
  • Steven D. Norton
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 329)


The antigen-specific activation of CD4+ T lymphocytes is absolutely dependent on ligands expressed on the surface of specialized hematopoietic cells1 known as antigenpresenting cells (APC). Recent results from many laboratories suggest that these ligands include: major histocompatibility complex (MHC) -encoded class II molecules that are important for presenting antigenic peptides to the T cell antigen receptor (TCR); adhesion molecules that facilitate the formation of T cell/APC conjugates; and molecules that transduce nonspecific costimulatory signals upon binding their complementary T cell receptors1-3. The efficiency of various APC types in their capacity to stimulate T cells can therefore be influenced by qualitative and/or quantitative differences in the expression or function of any of these molecules. Here we describe our analysis of the contribution of antigen-presentation, adhesion, and costimulation to the functional APC potency of dendritic cells and B cells.


Dendritic Cell Major Histocompatibility Complex Inositol Phosphate Major Histocompatibility Complex Molecule Costimulatory Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. L. Mueller, M. K. Jenkins, and R. H. Schwartz, Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu. Rev. Immunol. 7: 445 (1989).PubMedCrossRefGoogle Scholar
  2. 2.
    G. A. van Seventer, Y. Shimizu, and S. Shaw, Roles of multiple accessory molecules in T-cell activation: bilateral interplay of adhesion and costimulation. Curr. Opin. Immunol. 3: 294 (1991).PubMedCrossRefGoogle Scholar
  3. 3.
    C. T. Weaver, and E. R. Unanue, The costimulatory function of antigen-presenting cells. Immunol. Today 11: 49 (1990).PubMedCrossRefGoogle Scholar
  4. 4.
    C. H. June, J. A. Ledbetter, P. S. Linsley, and C. B. Thompson, Role of the CD28 receptor in T-cell activation. Immunol. Today 11: 211 (1990).PubMedCrossRefGoogle Scholar
  5. 5.
    P. S. Linsley, E. A. Clark, and J. A. Ledbetter, T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proc. Natl. Acad. Sci. USA 87: 5031 (1990).PubMedCrossRefGoogle Scholar
  6. 6.
    G. J. Freeman, A. S. Freedman, J. M. Segil, G. Lee, J. F. Whitman, and L. M. Nadler, B7, a new member of the Ig superfamily with unique expression on activated and neoplastic B cells. J. Immunol. 143: 2714 (1989).PubMedGoogle Scholar
  7. 7.
    T. R. Yokochi, D. Holly, and E. A. Clark, B lymphoblastoid antigen (BB-1) expressed on EBV-activated B cell blasts, B lymphoblastoid cell lines, and Burkitt’s lymphomas. J. Immunol. 128: 823 (1982).PubMedGoogle Scholar
  8. 8.
    C. H. June, J. A. Ledbetter, M. M. Gillespie, T. Lindsten, and C. B. Thompson, T-cell proliferation involving the CD28 pathway is associated with cyclosporineresistant IL-2 gene expression. Mol. Cell. Biol. 7: 4472 (1987).PubMedGoogle Scholar
  9. 9.
    M. K. Jenkins, P. S. Taylor, S. D. Norton, and K. B. Urdahl, CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J. Immunol. 147: 2461 (1991).PubMedGoogle Scholar
  10. 10.
    P. S. Linsley, W. Brady, L. Grosmaire, A. Aruffo, N. K. Damle, and J. A. Ledbetter, Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and IL-2 mRNA accumulation. J. Exp. Med. 173: 721 (1991).PubMedCrossRefGoogle Scholar
  11. 11.
    C.D. Gimmi, G. J. Freeman, J. G. Gribben, K. Sugita, A. S. Freedman, C. Morimoto, and L. M. Nadler, B-cell surface antigen B7 provides a costimulatory signal that induces T cells to proliferate and secrete IL-2. Proc. Natl. Acad. Sci. USA 88: 6575 (1991).PubMedCrossRefGoogle Scholar
  12. 12.
    A. Weiss, B. Manger, and J. Imboden. 1986. Synergy between the T3/antigen receptor complex and Tp44 in the activation of human T cells. J. Immunol. 137: 819 (1986).Google Scholar
  13. 13.
    P. Vandenberghe, G. J. Freeman, L. M. Nadler, M. C. Fletcher, M. Kamoun, L. A. Turka, J. A. Ledbetter, C. B. Thompson, Antibody and B7/BB-1-mediated ligation of the CD28 receptor induces tyrosine phosphorylation in human T cells. J. Exp. Med. 175: 951 (1992).PubMedCrossRefGoogle Scholar
  14. 14.
    M. K. Jenkins, E. Burrell, and J. D. Ashwell, Antigen presentation by resting B cells. Effectiveness at inducing T cell proliferation is determined by costimulatory signals, not T cell receptor occupancy. J. Immunol. 144: 1585 (1990).PubMedGoogle Scholar
  15. 15.
    M. Crowley, K. Inaba, M. Witmer-Pack, and R. M. Steinman, The cell surface of mouse dendritic cells: FACS analyses of dendritic cells from different tissues including thymus. Cell. Immunol. 118: 108 (1989).PubMedCrossRefGoogle Scholar
  16. 16.
    M. K. Jenkins, C. Chen, G. Jung, D. L. Mueller, and R. H. Schwartz, Inhibition of antigen-specific proliferation of type 1 murine T cell clones after stimulation with immobilized anti-CD3 monoclonal antibody. J. Immunol. 144: 16 (1990).PubMedGoogle Scholar
  17. 17.
    L. Matis, L. Glimcher, W. Paul, and R. Schwartz, Magnitude of response of histocompatibility-restricted T-cell clones is a function of the product of the concentrations of antigen and Ia molecules. Proc. Natl. Acad. Sci. USA 80: 6019 (1983).CrossRefGoogle Scholar
  18. 18.
    P. S. Linsley, W. Brady, M. Urnes, L. S. Grosmaire, N. K. Damle, and J. A. Ledbetter, CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med. 174: 561 (1991).CrossRefGoogle Scholar
  19. 19.
    G. R. Crabtree, Contigent genetic regulatory events in T lymphocyte activation. Science 243: 355 (1989).PubMedCrossRefGoogle Scholar
  20. 20.
    C. Go, and J. Miller, Differential induction of transcription factors that regulate the IL-2 gene during anergy induction and restimulation. J. Exp. Med. 175: 1327 (1992).CrossRefGoogle Scholar
  21. 21.
    S. K. Durum, J. A. Schmidt, and J. J. Oppenheim, Interleukin 1: an immunological perspective. Annu. Rev. Immunol. 3: 263 (1985).PubMedCrossRefGoogle Scholar
  22. 22.
    J. Van Snick, Interleukin-6: an overview. Annu. Rev. Immunol. 8: 253 (1990).CrossRefGoogle Scholar
  23. 23.
    G. A. van Seventer, Y. Shimizu, K. J. Horgan, G. E. Ginther Luce, D. Webb, and S. Shaw, Remote T cell co-stimulation via LFA-l/ICAM-1 and CD2/LFA-3: demonstration with immobilized ligand/mAb and implication in monocytemediated co-stimulation. Eur. J. Immunol. 21: 1711 (1991).PubMedCrossRefGoogle Scholar
  24. 24.
    P. Kuhlman, V. T. Moy, B. A. Lollo, and A. A. Brian, The accessory function of murine ICAM-1 in T lymphocyte activation: contributions of adhesion and co-activation. J. Immunol. 146: 1773 (1991).PubMedGoogle Scholar
  25. 25.
    P. Moingeon, H. Chang, B. P. Wallner, C. Stebbins, A. Z. Frey, and E. L. Reinherz. CD2-mediated adhesion facilitates T lymphocyte recognition function. Nature 339: 312 (1989).PubMedCrossRefGoogle Scholar
  26. 26.
    S. Koide, and R. M. Steinman, Induction of murine IL-1: stimuli and responsive cells. Proc. Natl. Acad. Sci. USA 84: 3802 (1987).PubMedCrossRefGoogle Scholar
  27. 27.
    K. Kawakami, Y. Yamamoto, K. Kakimoto, and K. Onoue, Requirement of delivery of signals by physical interaction and soluble factors from accessory cells in the induction of receptor-mediated T cell proliferation. Effectiveness of IFN-γ modulation of accessory cells for physical interaction with T cells. J. Immunol. 142: 1818 (1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Marc K. Jenkins
    • 1
  • Dimuthu R. DeSilva
    • 1
  • Julia G. Johnson
    • 1
  • Steven D. Norton
    • 1
  1. 1.Department of MicrobiologyUniversity of Minnesota Medical SchoolMinneapolisUSA

Personalised recommendations