Genetic and Molecular Basis for Cellular Senescence

  • J. Carl Barrett
  • Lois A. Annab
  • P. Andrew Futreal
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 330)


Normal human and rodent cells in culture exhibit a finite life span at the end of which they exhibit morphological changes and cease proliferating, a process termed cellular senescence or cellular aging. Many cancer cells differ from normal cells in that they do not senesce and have an indefinite life span in culture, suggesting that alterations relating to cellular senescence are involved in the neoplastic evolution of tumor cells. Recent experimental results strongly support a genetic basis for cellular senescence. Defects in the senescence program in transformed cells can be corrected by introduction of a specific chromosome from normal cells into the abnormal cells. Using this approach, possible senescence genes have been mapped to specific chromosomes. Cell cycle control genes that regulate entry into the DNA synthetic phase of the cell cycle must be altered in senescent cells. Recent findings suggest that phosphorylation of the retinoblastoma gene is altered in senescent cells. It is possible, but not yet proven, that aging at the cellular level contributes to the aging of the individual. Therefore, an understanding of cellular senescence at the genetic and molecular levels may provide new insights into both the cancer and aging processes.


Cellular Senescence Population Doubling Senescent Cell Senescence Gene Population Doubling Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hayflick, H. The cell biology of human aging. New Engl. J. Med. 295:1302–1308 (1976).CrossRefPubMedGoogle Scholar
  2. 2.
    Daniel, C.W., DeOme, K.B., Young, J.T., Blair, P.B., Faulkin, L.J., Jr. The in vivo span of normal and preneoplastic mouse mammary glands: a serial transplantation study. Proc. Natl. Acad. Sci. USA 61:53–60 (1968).CrossRefPubMedGoogle Scholar
  3. 3.
    Macieira-Coelho, A. Biology of normal proliferating cells in vitro. Relevance for in vivo aging. In: Interdisciplinary Topics in Gerontology, Volume 23, ed. by von Hang, H.P. Karger, Basel (1988).Google Scholar
  4. 4.
    Barrett, J.C. and Fletcher, W.F. Cellular and molecular mechanisms of multistep carcinogenesis in cell culture models. In: Barrett, J.C. (ed.) Mechanisms of Environmental Carcinogenesis: Multistep Models of Carcinogenesis. Volume IL CRC Press, Boca Raton, 1987.Google Scholar
  5. 5.
    Sager, R. Genetic suppression of tumor formation: a new frontier in cancer research. Cancer Research 46:1573–1580 (1986).PubMedGoogle Scholar
  6. 6.
    Pereira-Smith, O.M.; Smith, J.R. Genetic analysis of indefinite division in human cells: Identification of four complementation groups. Proc. Natl. Acad. Sci. USA 85:6043–6046 (1988).CrossRefGoogle Scholar
  7. 7.
    Sugawara, O., Oshimura, M., Koi, M., Annab, L. and Barrett, J.C. Induction of cellular senescence in immortalized cells by human chromosome 1. Science 247:707–710 (1990).CrossRefPubMedGoogle Scholar
  8. 8.
    Koi, M. and Barrett, J.C. Loss of tumor-suppressive function during chemically induced neoplastic progression of Syrian hamster embryo cells. Proc. Natl. Acad. Sci. USA 83:5992–5996 (1986).CrossRefPubMedGoogle Scholar
  9. 9.
    Klein, C.B., Conway, K., Wang, X.W., Bhamra, R.K., Lin, X., Cohen, M.D., Annab, L., Barrett, J.C. and Costa, M. Senescence of nickel-transformed cells by a mammalian X chromosome: Possible epigenetic control. Science (in press, 1991).Google Scholar
  10. 10.
    Koi, M., Morita, H., Yamada, H., Satoh, H., Barrett, J.C. and Oshimura, M. Normal human chromosome 11 suppresses tumorigenicity of human cervical tumor cell line SiHa. Molecular Carcinogenesis 2:12–21 (1989).CrossRefPubMedGoogle Scholar
  11. 11.
    Lee, H.-H., Shew, J.-Y., Hong, F.D., Shery, T.W., Domoso, L.A., Young, L.-J., Bookstein, R. and Lee, E. Y.-H. P. The retinoblastoma susceptibility gene encodes a nuclear phosphoprotein associated with DNA binding activity. Nature 329:642–645 (1987).CrossRefPubMedGoogle Scholar
  12. 12.
    Zu, H.-J., Hu, S.-X., Hashimoto, T., Takahashi, R. and Benedict, W.F. The retinoblastoma susceptibility gene product: a characteristic pattern in normal and abnormal expression in malignant cells. Oncogene 4:807–812 (1989).Google Scholar
  13. 13.
    Friend, S. H., Horowitz, J.M., Gerber, M.R., Wang, X.-F., Bogenmann, E., Li, F.P. and Weinberg, R.A. Deletions of a DNA sequence in retinoblastomas and mesenchymal tumors: organization of the sequence and its encoded protein. Proc. Natl. Acad. Sci. USA 84:9059–9063 (1987).CrossRefPubMedGoogle Scholar
  14. 14.
    Weichselbaum, R. R., Beckett, M. and Diamond, A. Some retinoblastomas, osteosarcomas, and soft tissue sarcomas may share a common etiology. Proc. Natl. Acad. Sci. USA 85:2106–2109 (1988).CrossRefPubMedGoogle Scholar
  15. 15.
    Lee, E.Y.-H.P., To, H., Shew, Y.-Y., Bookstein, R., Scully, P. and Lee, W.-H. Inactivation of the retinoblastoma susceptibility gene in human breast cancers. Science 241:218–221 (1988).CrossRefPubMedGoogle Scholar
  16. 16.
    Harbour, J. W., Lai, S.-L., Whang-Peng, J., Gazdar, A.F., Minna,. D. and Haye, F.J. Abnormalities in structure and expression of the human etinoblastoma gene in SCLC. Science 241:353–357 (1988).CrossRefPubMedGoogle Scholar
  17. 17.
    TAng, A., Varley, J.M., Chakraborty, S., Murphree, A.L. and Fung, Y.-K.T. Structural rearrangement of the retinoblastoma gene in human breast carcinoma. Science 242:263–266 (1988).CrossRefPubMedGoogle Scholar
  18. 18.
    Stratton, M.R., Williams, S., Fisher, C., Ball, A., Westbury, G., Gusterson, B.A., Fletcher, C.D.M., Knight, J.C., Fung, Y.-K., Reeves, B.R. and Cooper, C.S. Structural alterations in the Rbl gene in human soft tissue tumours. Br. J. Cancer 60:202–205 (1989).CrossRefPubMedGoogle Scholar
  19. 19.
    DeCaprio, J. A., Ludlow, J.W., Lynch, D., Furukawa, Y., Griffin, J., Piwnica-Worms, H., Huang, C.-M. and Livingston, D.M. The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell 58:1085–1095 (1989).CrossRefPubMedGoogle Scholar
  20. 20.
    Chen, P.-L., Scully, P., Shew, J.-Y., Wang, J.Y.J. and Lee, W.-H. Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell 58:1193–1198 (1989).CrossRefPubMedGoogle Scholar
  21. 21.
    Buchkovich, K., Duffy, L.A. and Harlow, E. The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 58:1097–1105 (1989).CrossRefPubMedGoogle Scholar
  22. 22.
    Mihara, K., Cao, X.-R., Yen, A., Chandler, S., Driscoll, B., Murphree, A.L., TAng, A. and Fung, Y.-K.T. Cell cycle-dependent regulation of phosphorylation of the human retinoblastoma gene product. Science 246:1300–1303 (1989).CrossRefPubMedGoogle Scholar
  23. 23.
    Furukawa, Y., DeCaprio, J. A., Freedman, A., Kanakura, Y., Nakamura, M., Ernst, T. J., Livingston, D. M. and Griffin, J. D. Expression and state of phosphorylation of the retinoblastoma susceptibility gene product in cycling phosphorylation of the retinoblastoma susceptibility gene product in cycling and noncycling human hematopoietic cells. Proc. Natl. Acad. Sci. USA 87:2770–2774 (1990).CrossRefPubMedGoogle Scholar
  24. 24.
    Futreal, P.A.; and Barrett, J.C. Failure of senescent cells to phosphorylate the Rb protein. Oncogene (1991, in press).Google Scholar
  25. 25.
    Shew, J.-Y., Ling, N., Yang, X., Fodstad, O. and Lee. W.-H. Antibodies detecting abnormalities of the retinoblastoma susceptibility gene product (pp110 Rb) in osteosarcomas and synovial sarcomas. Oncogene Research 1:205–214 (1989).Google Scholar
  26. 26.
    Bernards, R., Schackleford, G. M., Gerber, M. R., Horowitz, J. M., Friend, S. H., Schartl, M., Bogenmann, E., Rapaport, J. M., McGee, T., Dryja, T.P. and Weinberg, R.A. Structure and expvession of the murine retinoblastoma gene and characterization of its encoded protein. Proc. Natl. Acad. Sci. USA 86:6464–6478 (1989).CrossRefGoogle Scholar
  27. 27.
    Stein, G. H., Beeson, M. and Gordon, L. Failure to phosphorylate the retinoblastoma gene product in senescent human fibroblasts. Science 249:666–669 (1990).CrossRefPubMedGoogle Scholar
  28. 28.
    Kovacs, G. Abnormalities of chromosome No. 1 in human solid malignant tumours. Int. J. Cancer 21:688–694 (1978).CrossRefPubMedGoogle Scholar
  29. 29.
    Rowley, J.D. Abnormalities of chromosome No. 1: significance in malignant transformation. Virchom Arch. 29:139–144 (1978).Google Scholar
  30. 30.
    Brito-Babpulle, V and Atkin, N.B. Break points in chromosome #1 abnormalities of 218 human neoplasms. Cancer Genet. Cytogenet. 4:215–225 (1981).CrossRefGoogle Scholar
  31. 31.
    Atkin, N.B. Chromosome 1 aberrations in cancer. Cancer Genet. Cytogenet. 1:279–285 (1986).CrossRefGoogle Scholar
  32. 32.
    Oláh, E., Balogh, E., Kovács, I. and Kiss, A. Abnormalities of chromosome 1 in relation to human malignant diseases. Cancer Genet. Cytogenet. 43:179–194 (1989).CrossRefPubMedGoogle Scholar
  33. 33.
    Fey, M.F., Hesketh, C., Wainscoat, J.S., Gendler, S. and Thein, S.L. Clonal allele loss in gastrointestinal cancers. Br. J. Cancer 59:750–754 (1989).CrossRefPubMedGoogle Scholar
  34. 34.
    Chen, L.-C., Dollbaum, C. and Smith, H.S. Loss of heterozygosity in chromosome lq in human breast cancer. Proc. Natl. Acad. Sci. USA 86:7204–7207 (1989).CrossRefPubMedGoogle Scholar
  35. 35.
    Merlo, G.R., Siddiqui, J., Cropp, C.S., Liscia, D.S., Lidereau, R., Callahan, R. and Kufe, D.W. Frequent alteration of the DF3 tumor-associated antigen gene in primary human breast carcinomas. Cancer Research 49:6966–6971 (1989).PubMedGoogle Scholar
  36. 36.
    Tiainen, M., Tammilehto, L., Rautonen, J., Tuomi, T., Mattson, K. and Knuutila, S. Chromosomal abnormalities and their correlations with asbestos exposure and survival in patients with mesothelioma. Br. J. Cancer 60:618–626 (1989).CrossRefPubMedGoogle Scholar
  37. 37.
    Paraskeva, C., Harvey, A., Finerty, S. and Powell, S. Possible involvement of chromosome 1 in in vitro immortalization: evidence from progression of a human adenoma-derived cell line in vitro. Int. J. Cancer 43:743–746 (1989).CrossRefPubMedGoogle Scholar
  38. 38.
    Reichmann, A., Martin, P. and Levin, B. Chromosomes in human large bowel tumors. A study of chromosome #1. Cancer Genet. Cytogenet. 12:295–301 (1984).CrossRefPubMedGoogle Scholar
  39. 39.
    Wright, W. E., Pereira-Smith, O.M. and Shay. J.W. Reversible cellular senescence: implications for immortalization of normal human diploid fibroblasts. Mol. Cell. Biol. 9:3088–3092 (1989).PubMedGoogle Scholar
  40. 40.
    DeCaprio, J.A., Ludlow, J.W., Figge, J., Shew, J.-Y., Huang, C.-M., Lee, W.-H., Marsilio, E., Paucha, E. and Livingston, D.M. SV40 Large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54:275–283 (1988).CrossRefPubMedGoogle Scholar
  41. 41.
    Ludlow, J.W., DeCaprio, J.A., Huang, C.-M., Lee, W.-H., Paucha, E. and Livingston, D. M. SV40 Large T antigen binds preferentially to an under phosphorylated member of the retinoblastoma susceptibility gene product family. Cell 56:57–65 (1989).CrossRefPubMedGoogle Scholar
  42. 42.
    Sherwood, S.W., Rush, D., Ellsworth, J.L. and Schimke, R.T. Defining cellular senescence in IMR-90 cells: a flow cytometric analysis. Proc. Natl. Acad. Sci. USA 85:9086–9090(1988).CrossRefPubMedGoogle Scholar
  43. 43.
    Draetta, G. Cell cycle control in eukaryotes: molecular mechanisms of cdc2 activation. TIBS 15:378–383 (1990).PubMedGoogle Scholar
  44. 44.
    Moreno, S. and Nurse, P. Substrates for p34cdc2: in vivo veritas? Cell 61:549–551 (1990).CrossRefPubMedGoogle Scholar
  45. 45.
    D’Urso, G., Marraccino, R.L., Marshak, D.R. and Roberts, J.M. Cell cycle control of DNA replication by a homologue from human cells of the p34cdc2 protein kinase. Science 250:786–791 (1990).CrossRefPubMedGoogle Scholar
  46. 46.
    Cisek, L.J. and Corden, J.L. Phosphorylation of RNA Polymerase by the murine homologue of the cell-cycle control protein cdc2. Nature 339:679–684 (1989).CrossRefPubMedGoogle Scholar
  47. 47.
    Sturzbecher, H.-W., Maimets, T., Chumakov, P., Brain, R., Addison, C., Simanis, V., Rudge, K. and Philip, R., Grimaldi, M., Court, W. and Jenkins, J.R. p53 Interacts with p34cdc2 in mammalian cells: implications for cell cycle control and oncogenesis. Oncogene 5:795–801 (1990).PubMedGoogle Scholar
  48. 48.
    Lee, M. and Nurse, P. Cell cycle control genes in fission yeast and mammalian cells. TIG 4:287–290 (1988).CrossRefPubMedGoogle Scholar
  49. 49.
    Harley, C.B., Futcher, A.B. and Greider, C.W. Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460 (1990).CrossRefPubMedGoogle Scholar
  50. 50.
    Hastie, N.D., Dempster, M., Dunlop, M.G., Thompson, A.M., Green, D.K. and Allshire, R.C. Telomere reduction in human colorectal carcinoma and with ageing. Nature 346:866–868 (1990).CrossRefPubMedGoogle Scholar
  51. 51.
    Hayflick, L. Antecedents of cell aging research. Exp. Gerontol. 24:355–365 (1989).CrossRefPubMedGoogle Scholar
  52. 52.
    Paraskeva, C., Finarty, S. and Powell, S. Immortalization of a human colorectal adenoma cell line by continuous in vitro paasage: possible involvement of chromosome 1 in tumour progression. Int. J. Cancer 41:908–912 (1988).CrossRefPubMedGoogle Scholar
  53. 53.
    Paraskeva, C., Finarty, S., Mountford, R.A. and Powell, S.C. Specific cytogenetic abnormalities in two new human colorectal adenoma-derived epithelial cell lines. Cancer Res. 49:1282–1286 (1989).PubMedGoogle Scholar
  54. 54.
    Paraskeva, C., Harvey, A., Finarty, S. and Powell, S. Possible involvement of chromosome 1 in in vitro immortalization: evidence from progression of a human adenoma-derived cell line in vitro. Int. J. Cancer 43:743–746 (1989).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • J. Carl Barrett
    • 1
  • Lois A. Annab
    • 1
  • P. Andrew Futreal
    • 1
  1. 1.Laboratory of Molecular CarcinogenesisNational Institute of Environmental Health SciencesResearch Triangle ParkUSA

Personalised recommendations