Breast Cancer: Influence of Endocrine Hormones, Growth Factors and Genetic Alterations

  • Robert B. Dickson
  • Michael D. Johnson
  • Dorraya El-Ashry
  • Yenian Eric Shi
  • Mozeena Bano
  • Gerhard Zugmaier
  • Barbara Ziff
  • Marc E. Lippman
  • Susan Chrysogelos
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 330)


Breast cancer is a disease whose frequency as well as pathologic characteristics vary markedly with age and sex. Women develop breast cancer with an incidence of approximately 1 in 10 in the United States, about 100 times the frequency in men. In women, the incidence of breast cancer increases with increasing age, but the rate of increase drops off sharply at the age of menopause (Pike et al., 1981). Breast cancer is more likely in postmenopausal than in premenopausal women to be positive for the receptor for estrogen (Ottman et al., 1981). Estrogen receptor positive breast cancer, whether postmenopausal or premenopausal, is associated with better prognosis than receptor negative breast cancer (Sunderland and McGuire, 1990). These statistics have contributed to the view that exposure of the mammary gland to ovarian estrogens (and progestins) is critical to onset and malignant progression of breast cancer. Indeed, perimenarchal loss of ovarian function can result in a decrease in breast cancer risk by a factor of 100 to about that found in men (Brown, 1981). Furthermore, ovariectomy and/or antiestrogenic and antiprogestational drugs have been successfully used in treatment of breast cancer (lino et al., 1990).


Breast Cancer Breast Cancer Cell Line Transform Growth Factor Human Breast Cancer Cell Mammary Epithelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, T.J., Battersby, S. and Macintyre, C.C.A. Proliferative and secretory activity in human breast during natural and artificial menstrual cycles. American J. of Pathology, 130:193–204, 1988.Google Scholar
  2. Andrea, A.C., Schoenberger, C.A., Grover, B., Hennighauser, L., LeMaur, M. and Gerlinger, P. Ha-ras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal regulation and tumor incidence in transgenic mice. Proc. Nat’l. Acad. Sci. USA. 84:1299–1303, 1987.CrossRefGoogle Scholar
  3. Anzano, M.A., Roberts, A.B., De Larco, J.E., Wakefield, L.M., Assoian, R.K., Roche, N.S., Smith, J.M., Lazarus, J.E. and Sporn, M.B. Increased secretion of type ß transforming growth factor accompanies viral transformation of cells. Mol. Cell. Biol. 5:242–250, 1985.PubMedGoogle Scholar
  4. Anzano, M.A., Roberts, A.B., Smith, J.M., Sporn, M.B. and DeLarco, J.E. Sarcoma growth factor from conditioned medium of virally transformed cells is composed of both type α and type ß transforming growth factors. Proc. Natl. Acad. Sci. (U.S.A.) 80:6264–6268, 1983.CrossRefGoogle Scholar
  5. Arrick, B.A., Korc, M. and Derynck, R. Differential regulation of three transforming growth factor β species in human breast cancer cell lines by estradiol. Cancer Res., 50:299–303, 1990.PubMedGoogle Scholar
  6. Artega, C.L., Hanauske, A.R., Clark, G.M., Osborne, C.K., Hazarika, P., Pardue, R.L., Tio, F. and Von Hoff, D.D. Immunoreactive alpha transforming growth factor (IrαTGF) activity in effusions from cancer patients: a marker of tumor burden and patient prognosis. Cancer Res. 48:5023–5028, 1988a.Google Scholar
  7. Artega, C.L., Tandon, A.K., Von Hoff, D.D. and Osborne, C.K. Transforming growth factor ß: potential autocrine growth inhibitor of estrogen receptor-negative human breast cancer cells. Cancer Res., 48:3898–3903, 1988b.Google Scholar
  8. Bano, M., Kidwell, W.R., Lippman, M.E. and Dickson, R.B. Characterization of MDGF-1 receptor in human mammary epithelial cell liver. J. Biol. Chem., 265:1874–1880, 1990a.PubMedGoogle Scholar
  9. Bano, M., Lupu, R., Kidwell, W.R., Lippman, M.E. and Dickson, R.B. Characterization of MDGF1 and its receptor in human breast cancer cells. Proceedings of the American Association for Cancer Research, Washington, D.C., 1990b.Google Scholar
  10. Bano, M., Solomon, D.S. and Kidwell, W.R. Purification of mammary derived growth factor 1 (MDGF1) from human milk and mammary tumors. J. Biol. Chem. 260:5745–5752, 1985.PubMedGoogle Scholar
  11. Bates, S.E., Davidson, N.E., Valverius, E.M., Dickson, R.B., Freter, C.E., Tarn, J.P., Kudlow, J.E., Lippman, M.E. and Salomon, D.S. Expression of transforming growth factor alpha and its mRNA in human breast cancer: its regulation by estrogen and its possible functional significance. Mol. Endo. 2:543–555, 1988.CrossRefGoogle Scholar
  12. Bates, S.E., McManaway, M.E., Lippman, M.E. and Dickson, R.B. Characterization of estrogen responsive transforming activity in human breast cancer cell lines. Cancer Res. 46:1707–1713, 1986.PubMedGoogle Scholar
  13. Bates, S.E., Valverius, E.M., Ennis, B.W., Bronzert, D.A., Sheridan, J.P., Stampfer, M.R., Mendelsohn, S., Lippman, M.E. and Dickson, R.B. Expression of the transforming growth factor α/Epidermal growth factor receptor pathway in normal human breast epithelial cells. Endocrinology 126:596–607, 1990.PubMedCrossRefGoogle Scholar
  14. Beatson, G.T. On the treatment of inoperable cases of carcinoma of the mamma: suggestion for a new method of treatment, with illustrative cases. Lancet 2:104–107, 1986.Google Scholar
  15. Bohmer, F.D., Kraft, R., Otto, A., Wernstedt, C., Hellman, U., Kurtz, A., Mullen, T., Rohde, K., Etzold, G., Lehmann, W., Langen, P., Heldin, C.H. and Grosse, R. Identification of a Polypeptide growth inhibitor from bovine mammary gland. J. Biol. Chem. 262:15137–15143, 1987.PubMedGoogle Scholar
  16. Bonilla, M., Ramirez, M., Lopez-Cuento, J., and Gariglio, P. In vivo amplification and rearrangements of c-myc oncogene in human breast tumors. J. Nat’l. Cancer Inst., 80:665–671, 1988.CrossRefGoogle Scholar
  17. Bronzert, D.A., Bates, S.E., Sheridan, J.A., Lindsay, R., Valverius, E.M., Stampfer, M.R., Lippman, M.E. and Dickson, R.B. TGFβ induces PDGF mRNA and PDGF secretion while inhibiting growth in normal human mammary epithelial cells. Molec. Endocrinol. 4:981–989, 1990.CrossRefGoogle Scholar
  18. Brown, J.B. Hormone profiles in young women at risk for breast cancer: A study of ovarian function during thelarch, menarche and menopause and after childbirth. In: Banbury Report 8: Hormones and Cancer. Edited by Pike, M.C., Siiteri, P.K. and Welsch, C.W. Cold Spring Harbor Laboratory, pp. 33-56, 1981.Google Scholar
  19. Cheifetz, S., Bassols, A., Stanley, K., Ohta, M., Greenberger, J. and Massague, J. Heterodimeric Transforming Growth Factor ß. J. Biol. Chem. 263:10783–10790, 1988.PubMedGoogle Scholar
  20. Ciardiello, F., Hynes, N., Kim, N., Valverius, E.M., Lippman, M.E. and Salomon, D.S. Transformation of mouse mammary epithelial cells with the Ha-ras but not the neu oncogene results in a gene dosage-dependant increase in transforming growth factor α production. FEBS Letters 250:474–478, 1989.PubMedCrossRefGoogle Scholar
  21. Ciardiello, F., Kim, N., Hynes, N., Jaggo, R., Redmond, S., Liscia, D.S., Sanfilippo, B., Mario, G., Callahan, R., Kidwell, W.R. and Salomon, D.S. Induction of transforming growth factor α expression in mouse mammary epithelial cells after transformation with a point-mutated c-Ha-ras protooncogene. Mol. Endocrinol 2:1202–1216, 1988.PubMedCrossRefGoogle Scholar
  22. Ciardiello, F., McGready, M., Kim, N., Basalo, F., Hynes, N., Langton, B.C., Yokozaki, H., Sucki, T., Elliot, J.W., Masui, H., Mendelsohn, J., Soule, H., Russo, J. and Salomon, D. TGFα expression is enhanced in human mammary epithelial cells transformed by an activated c-Ha-ras but not by the c-neu protooncogene and over-expression of the TGFα cDNA leads to transformation. Cell Growth and Differentiation 1:407–420, 1990.PubMedGoogle Scholar
  23. Clair, T., Miller, W.R. and Cho-Chung, Y.S. Prognostic significance of the expression of a ras protein with a molecular weight of 21,000 by human breast cancer. Cancer Res., 47:5290–5296, 1987.PubMedGoogle Scholar
  24. Clarke, R., Brunner, N., Katz, D., Glanz, P. Dickson, R.B., Lippman, M.E. and Kern, F. The effects of a constitutive production of TGFa on the growth of MCF-7 human breast cancer cells in vitro and in vivo. Mol. Endocrinol., 3:372–380, 1989.PubMedCrossRefGoogle Scholar
  25. Clarke, C.L. and Sutherland, R.L. Progestin regulation of cellular proliferation. Endocrine Reviews 11:266–301, 1990.PubMedCrossRefGoogle Scholar
  26. Cline, M., Battifora, H. and Yokota, J.J. Protooncogene abnormal-ities in human breast cancer: Correlations with anatomic features and clinical course of diagnosis. J. Clin. Oncol. 5:999–1006, 1987.PubMedGoogle Scholar
  27. Coffey, R.J., Derynck, R., Wilcox, J.N., Bringman, T.S., Goustin, A.S., Moses, H.L. and Pittelkow, M.R. Production and auto-induction of transforming growth factor-α in human keratinocytes. Nature 328:817–820, 1987.PubMedCrossRefGoogle Scholar
  28. Coleman, S. and Daniel, C.W. Inhibition of mouse mammary ductal morphogenesis and down regulation of the EGF receptor by epidermal growth factor. Developmental Biology 137:425–433, 1990.PubMedCrossRefGoogle Scholar
  29. Cullen, K.J., Hill, S., Paik, S., Smith, H.S., Lippman, M. and Rosen, N. Growth factor mRNA expression by human breast fibroblasts from benign and malignant lesions. Proc. Am. Ass. Cancer Res. 1990Google Scholar
  30. Daniel, C.W., Silberstein, G.A. and Strickland, P. Direct action of 17 β estradiol in mouse mammary ducts analyzed by sustained release implants and steroid autoradiography. Cancer Research 47:6052–6057, 1987.PubMedGoogle Scholar
  31. Davidson, N.E., Gelmann, E.P., Lippman, M.E. and Dickson, R.B. Epidermal growth factor receptor gene expression in estrogen receptor-positive and negative human breast cancer cell lines. Mol. Endocrinol. 1:216–223, 1987.PubMedCrossRefGoogle Scholar
  32. Derynck, R. Transforming growth factor α Cell 54:593–595, 1988.PubMedCrossRefGoogle Scholar
  33. Dickson, R.B., Huff, K.K., Spencer, E.M. and Lippman, M.E. Induction of epidermal growth factor-related Polypeptides by estradiol in MCF-7 human breast cancer cells. Endocrinology 118:138–142, 1986a.PubMedCrossRefGoogle Scholar
  34. Dickson, R.B., Kasid, A., Huff, K.K., Bates, S., Knabbe, C., Bronzert, D., Gelmann, E.P. and Lippman, M.E. Activation of growth factor secretion in tumorigenic states of breast cancer induced by 17-ß-estradiol or v-rasH oncogene. Proc. Nat’l. Acad. Sci. (U.S.A.) 84:837–841, 1987.CrossRefGoogle Scholar
  35. Dickson, R.B. and Lippman, M.E. Control of human breast cancer by estrogen, growth factors, and oncogenes. In: Breast Cancer: Cellular and Molecular Biology edited by M.E. Lippman and R.B. Dickson, Kluwer Press, Boston, pp. 119–166, 1988.CrossRefGoogle Scholar
  36. Dickson, R.B., McManaway M.E., and Lippman, M.E. Estrogen-induced factors of breast cancer cells partially replace estrogen to promote tumor growth. Science 232:1540–1543, 1986b.PubMedCrossRefGoogle Scholar
  37. Di Fiore, P.P., Pierce, J.H., Fleming, T.P., Hazan, R., Ullrich, A., King, C.R., Schlessinger, J. and Aaronson, S.A. Overexpression of the human EGF receptor confers an EGF-dependent transformed phenotype to NIH 3T3 cells. Cell 51:1063–1070, 1987.PubMedCrossRefGoogle Scholar
  38. Di Fiore, P.P., Pierce, J.H., Kraus, M.H., Segatto, O., King, C.R. and Aaronson, S.A. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science 237:178–182, 1987.PubMedCrossRefGoogle Scholar
  39. Dubik, D., Dembinski, T.C. and Shiu, R.P.C. Stimulation of c-myc oncogene expression associated with estrogen-induced proliferation of human breast cancer cells. Cancer Research 47:6517–6521, 1987.PubMedGoogle Scholar
  40. Dulbecco, R. Experimental studies in mammary development and cancer: relevance to human cancer. Advances in Oncology 5:3–6, 1990.Google Scholar
  41. Eckert, K., Granetzny, A., Fischer, J., Nexo, E. and Grosse, R. An Mr 43,000 epidermal growth-factor related protein purified from the urine of breast cancer patients. Cancer Research 50:642–647, 1990.PubMedGoogle Scholar
  42. Ennis, B.W., Valverius, E.M., Lippman, M.E., Bellot, F., Kris, R., Schlessinger, J., Masui, H., Goldberg, A., Mendelsohn, J. and Dickson, R.B. Anti EGF receptor antibodies inhibit the autocrine stimulated growth of MDA-MB-468 breast cancer cells. Mol. Endocrinol. 3:1830–1838, 1989.PubMedCrossRefGoogle Scholar
  43. Ervin, P.R., Kaminski, R.C., Cody, R.C. and Wicha, M.S. Production of mammastatin, a tissue specific growth inhibitor, by normal human mammary epithelial cells. Science 244:1585–1587, 1989.PubMedCrossRefGoogle Scholar
  44. Escot, G., Theillet, G., Lidereau, R., Spyratos, F., Champeme, M.H., Gest, J. and Callahan, R. Geneticalteration of the c-myc proto-oncogene in human primary breast carcinomas. Proa Nat’l Acad. Sci. (U.S.A.) 83:4834–4838, 1986.CrossRefGoogle Scholar
  45. Finzi, E., Fleming, T., Segatto O., Pennington, C.Y., Bringman, T.S., Derynck, R. and Aaronson, S.A. The human transforming growth factor type a coding sequence is not a direct-acting oncogene when overexpressed in NIH 3T3 cells. Proc. Nat’l. Acad. Sci. (U.S.A.) 84:3733–3737, 1987.CrossRefGoogle Scholar
  46. Foekens, J.A., Portengen, M., Janssen, M. and Klijn, J.G.M. Insulin-like growth factor I receptors and insulin-like growth factor I activity in primary human breast cancer. Cancer 63:2139–2147, 1989.PubMedCrossRefGoogle Scholar
  47. Folkman, J. and Klagsbrun, M. Angiogenic Factors. Science 235:442–447, 1987.PubMedCrossRefGoogle Scholar
  48. Goustin, A.S., Leof, E.B., Shipley, G.D. and Moses, H.L. Growth factors and cancer. Cancer Res. 46:1015–1029, 1986.PubMedGoogle Scholar
  49. Gregory, H., Thomas, C.E., Willshire, L.R., Young, J.A., Anderson, H., Baildan, A. and Howell, A. Epidermal and transforming growth factor α in patients with breast tumors. British J. Cancer 59:605–609, 1989.CrossRefGoogle Scholar
  50. Hammond, S.L., Ham, R.G. and Stampfer, M.R. Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract. Proc. Natl Acad. Sci. (USA.), 81:5435–5439, 198CrossRefGoogle Scholar
  51. Heldin, C.H. and Westermark, B. Growth factors: mechanism of action and relations to oncogenes. Cell 37:9–20, 1984.PubMedCrossRefGoogle Scholar
  52. Horan-Hand, P., Vilase, V., Thor, A., Ohuchi, N. and Schlom, J. Quantitation of Harvey ras p21 enhanced expression in human breast and colon carcinomas. J. Nat’l. Cancer Inst. 79:59–65, 1987.Google Scholar
  53. Hudziak, R.M., Schlessinger, J. and Ullrich, A. Increased expression of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH 3T3 cells. Proc. Natl Acad, Sci. (USA.) 84:7159–7162, 1987.CrossRefGoogle Scholar
  54. Huff, K.K., Lippman, M.E., Spencer, E.M. and Dickson, R.B. Secretion of an insulin-like growth factor I-related Polypeptide by human breast cancer cells. Cancer Res. 46:4613–4619, 1986.PubMedGoogle Scholar
  55. lino, Y., Gibson, D.F.C. and Jordan, V.C. Antiestrogen therapy for breast cancer: Current strategies and potential causes for therapeutic failure, in: Regulatory Mechanisms in Breast Cancer edited by Lippman, M.E. and Dickson, R.B., Kluwer Academic Publishers, Norwell, Massachusetts, pp. 221–238, 1990.Google Scholar
  56. Jabara, A.G., Toyne, PH., Harcourt, A.G. Effects of time and duration of progesterone administration on mammary tumors induced by DMBA in Sprague Dawley rats. Br. J. Cancer 27:63–71, 1973.PubMedCrossRefGoogle Scholar
  57. Jhappan, C., Stahle, C., Harkins, R.N., Fausto, N., Smith, G.H. and Merlino, G.T. TGFα overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas. Cell 61:1137–1146, 1990.PubMedCrossRefGoogle Scholar
  58. Kelekar, A. and Cole, M.D. Immortalization by c-myc, H-ras, and Ela oncogenes induces differential cellular gene expression and growth factor responses. Mol. Cell Biol. 7:3899–3907, 1987.PubMedGoogle Scholar
  59. King, R.J.B., Wang, D.Y., Daley, R.J. and Darbre, P.D. Approaches to studying the role of growth factors in the progression of breast tumors from the steroid sensitive to insensitive state. J. Steroid Biochem. 34:133–138, 1989.PubMedCrossRefGoogle Scholar
  60. Knabbe, C., Wakefield, L., Flanders, K., Kasid, A., Derynck, R., Lippman, M.E. and Dickson, R.B. Evidence that TGF beta is a hormonally regulated negative growth factor in human breast cancer. Cell 48:417–428, 1987.PubMedCrossRefGoogle Scholar
  61. Koi, M., Afshari, C.A., Annab, LA. and Barrett, J.C. Role of a tumor-suppressor gene in the negative control of anchorage-independent growth of Syrian hamster cells. Proc. Natl Acad. Sci. U.S.A. 86:8773–8777, 1989.PubMedCrossRefGoogle Scholar
  62. Kozma, S.C., Bogaard, M.E., Buser, K., Saurer, S.M., Bos, J.L., Groner, B. and Hynes, N.E. The human c-Kirsten ras gene is activated by a novel mutation in codon 13 in the breast carcinoma cell line MDA-MB 231. Nucleic Acids Research 15:5963–5971, 1988.CrossRefGoogle Scholar
  63. Kraus, M.H., Issing, W., Miki, T., Popescu, N.C. and Aaronson, S.A. Isolation and characterization of ERBB3, a third member of the ERB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors. Proc. Nat’l. Acad. Sci. U.S.A. 86:9193–9197, 1989.CrossRefGoogle Scholar
  64. Kraus, M.H., Yuspa, Y. and Aaronson, S.A. A position 12-activated H-ras oncogene in all Hs578T mammary carcinosarcoma cells but not normal mammary cells of the same patient. Proc. Natl Acad. Sci. U.S.A. 81:5384–5388, 1984.PubMedCrossRefGoogle Scholar
  65. Kurachi, H., Okamoto, S. and Oka, T. Evidence for the involvement of the submandibular gland epidermal growth factor in mouse mammary tumorigenesis. Proc. Nat’l. Acad. Sci. U.S.A. 81:5940–5943, 1985.CrossRefGoogle Scholar
  66. Kurtz, A., Vogel, F., Funa, K., Heldin, C.H. and Grosse, R. Developmental regulation of mammary-derived growth inhibitor expression in bovine mammary tissue. J. Cell Biol. 110:1779–1789, 1990.PubMedCrossRefGoogle Scholar
  67. Laiho, M., DeCaprio, J.A., Ludlow, J.W., Livingston, D.M. and Massague, J. Growth inhibition by TGFß linked to suppression of retinoblastoma protein phosphorylation. Cell 62:175–185, 1990.PubMedCrossRefGoogle Scholar
  68. Lee, E., Bookstein, R. and Lee, W-H. Role of the retinoblastoma gene in the oncogenesis of human breast carcinoma. In: Regulation of Breast Cancer edited by M.E. Lippman and R.B. Dickson, Kluwer Press, Boston, pp. 23–44, 1990.Google Scholar
  69. Leof, E.B., Proper, J.A. and Moses, H.L. Modulation of transforming growth factor type α action by activated ras and c-myc. Mol. Cell Biol. 7:2649–2652, 1987.PubMedGoogle Scholar
  70. Liscia, D.S., Merlo, G., Ciardiello, F., Kim, N., Smith, G.H., Callahan, R.H., and Salomon, D.S. Transforming growth factor-α messenger RNA localization in the developing adult rat and human mammary gland by in situ hybridization. Developmental Biology 140:123–131, 1990.PubMedCrossRefGoogle Scholar
  71. Longacre, T.A. and Bartow, S.A. A correlative morphologic study of human breast and endometrium in the menstrual cycle. Am. J. Surg. Path. 10:382–393, 1986.PubMedCrossRefGoogle Scholar
  72. Lupu, R., Colomer, R., Zugmaier, G., Slamon, D. and Lippman, M.E. A ligand for the erbB2oncogene product interacts directly with both the EGF rerceptor and erbB2 Science 249:1552–1554, 1990.PubMedCrossRefGoogle Scholar
  73. Lupu, R., Dickson, R.B. and Lippman, M.E. Biologically active glycosylated TGFα released by estrogen receptor negative human breast cancer cell line. UCLA Symposium on Growth Regulation of Cancer (abstract) 1989.Google Scholar
  74. Macias, A., Perez, R., Hägerström, T. and Skoog, L. Identification of transforming growth factoralpha in human primary breast carcinomas. Anticancer Research 7:1271–1280, 1987.PubMedGoogle Scholar
  75. Massague, J. Epidermal growth factor-like transforming growth factor. J. Biol. Chem. 258:13606–13613, 1983.PubMedGoogle Scholar
  76. Masui, T., Wakefield, L.M., Lechner, J.F., La Veck, M.A., Sporn, M.B. and Harris, C.C., Type ß transforming growth factor is the primary differentiation-inducing serum factor for normal human bronchial epithelial cells. Proc. Nat’l, Acad. Sci. U.S.A. 83:2438–2442, 1986.CrossRefGoogle Scholar
  77. Matsui, Y., Halter, S.A., Holt, J.T., Hogan, B.L.M. and Coffey, R. Development of mammary hyperplasia and neoplasia in MMTV-TGFα transgenic mice. Cell 61:1147–1155, 1990.PubMedCrossRefGoogle Scholar
  78. McCarty, K.S. Proliferative stimuli in the normal breast: estrogens or progestins. Human Pathology 20:1137–1138, 1989.PubMedCrossRefGoogle Scholar
  79. Medina, D. The preneoplastic state in mouse mammary tumorigenesis. Carcinogenesis 9:1113–1120, 1988.PubMedCrossRefGoogle Scholar
  80. Mikkelsen, T. and Cavenee, W. Suppressors of the malignant phenotype. Cell Growth and Differentiation 1:201–207, 1990.PubMedGoogle Scholar
  81. Molinolo, A.A., Lanari, C., Charreau, E.H., Sanjuan, N. and Pasquilini, C.D. Mouse mammary tumors induced by medrony progesterone acetate: immunohistochemistry and hormonal receptors. J. Natl. Cancer Inst. 79:1341–1350, 1987.PubMedGoogle Scholar
  82. Murphy, L.C. and Dotzlau, H. Regulation of transforming growth factor β messenger ribonucleic acid abundance in T47D, human breast cancer cells. Mol. Endocrinol. 3:611–617, 1989.PubMedCrossRefGoogle Scholar
  83. Murphy, L.C., Murphy, L.J., Dubik, D., Bell, G.I. and Shiu, R.P.C. Epidermal growth factor gene expression in human breast cancer cells: regulation of expression by progestins. Cancer Res. 48:4555–4560, 1988.PubMedGoogle Scholar
  84. Murphy, L.J., Sutherland, R.L., Steed, B., Murphy, L.C. and Lazarus, L. Progestin regulation of epidermal growth factor receptor in human mammary carcinoma cells. Mol. Endocrinol. 46:728–734, 1986.Google Scholar
  85. Musgrove, E.A. and Sutherland, R.L. Steroids, growth factors and cell cycle controls in breast cancer. In: Regulation of Breast Cancer edited by Lippman, M.E. and Dickson, R.B. Kluwer Academic Publishers, Norwell, Massachusetts, pp. 305–331, 1990.Google Scholar
  86. Nigro, J.M., Baker, S.J., Preisinger, A.C., Jessup, J.M., Hostetter, R., Cleary, K., Bigner, S.H., Davidson, N., Baylin, S., Devilee, P., Glover, T., Collins, F.S., Westin, A., Modali, R., Harris, C.C. and Vogelstein, B. Mutations of the p53 gene occur in diverse tumor types. Nature 232:705–708, 1989.CrossRefGoogle Scholar
  87. Oka, T., Tsutsumi, O., Kurachi, H., and Okamoto, S. The role of epidermal growth factor in normal and neoplastic growth of mouse mammary epithelial cells. In: Breast Cancer: Cellular and Molecular Biology edited by M.E. Lippman and R.B. Dickson. Kluwer Press, Boston, pp. 343–362, 1988.CrossRefGoogle Scholar
  88. Osborne, C.K., Hamilton, B., Titus, G., Livingston, R.B. Epidermal growth factor stimulation of human breast cancer cells in culture. Cancer Res. 40:2361–2366, 1980.PubMedGoogle Scholar
  89. Ottman, R., Hoffman, P.G., and Siiteri, P.K. Estrogen receptor assays in familial and non-familial breast cancer. In: Banbury Report 8: Hormones and Breast Cancer (Pike, M.C., Siiteri, P.K. and Welsch, C.W., eds.), Cold Spring Harbor Laboratory, pp. 191-211, 1981.Google Scholar
  90. Paik, S., Hazan, R., Fisher, E.R., Sass, R.E., Fisher, B., Redmond, C., Schlessinger, J., Lippman, M.E. and King, C.R. Pathologic findings from the National Surgical Adjuvant breast and bowel project: prognostic significance of erbB2 protein overexpression in primary breast cancer. J. Clin. Oncol. 8:103–112, 1990.PubMedGoogle Scholar
  91. Paul, D. and Schmidt, G.H. Immortalization and malignant transformation of differentiated cells by oncogenes in vitro and in transgenic mice, Critical Reviews in Oncogenesis. 1:307–321, 1989.PubMedGoogle Scholar
  92. Perez, R., Pascual, M., Macias, A. and Lage, A. Epidermal growth factor receptors in human breast cancer. Breast Cancer Reg. Treat. 4:189–193, 1984.CrossRefGoogle Scholar
  93. Perroteau, I., Salomon, D., DeBortoli, M., Kidwell, W., Hazarika, P., Pardue, R., Dedman, J. and Tarn, J. Immunological detection and quantitation of alpha transforming growth factors in human breast carcinoma cells. Breast Cancer Res. Treat. 7:201–210, 1986.PubMedCrossRefGoogle Scholar
  94. Pike, M.D., Henderson, B.E., and Casagrande, J.T. The epidemiology of breast cancer as it relates to menarche pregnancy and menopause. In: Banbury Report 8: Hormones and Breast Cancer (Pike, M.C., Siiteri, P.K. and Welsch, C.W., eds.), Cold Spring Harbor Laboratory, pp. 3-21, 1981.Google Scholar
  95. Plowman, G.D., Green, J.M., McDonald, V.C., Neubauer, M.G., Disteche, C.M., Todaro, G.J. and Shoyab, M. The amphiregulin gene encodes a novel epidermal growth factorrelated protein with tumor inhibitory activity. Molecular and Cellular Biology 10:1969–1981, 1990.PubMedGoogle Scholar
  96. Ponder, B.A.J. Inherited predisposition to cancer. Trends in Genetics 6:213–218, 1990.PubMedCrossRefGoogle Scholar
  97. Rastinejad, F., Polverini, PJ. and Bouck, N.P. Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 56:345–355, 1989.PubMedCrossRefGoogle Scholar
  98. Riedel, H., Massoglia, S., Schlessinger, J. and Ullrich, A. Ligand activation of overexpressed epidermal growth factor receptors transforms NIH 3T3 mouse fibroblasts. Proc. Nat’l. Acad. Sci. (U.S.A.) 85:1477–1482, 1988.CrossRefGoogle Scholar
  99. Robinson, S.P., and Jordan, V.C Reversal of the antitumor effects of tamoxifen by progesterone in the DMBA-induced rat mammary carcinoma model, Cancer Research. 47:5386–5390, 1987.PubMedGoogle Scholar
  100. Rosenthal, A., Lindquist, P.B., Bringman, T.S., Goeddel, D.V. and Derynck, R. Expression in rat fibroblasts of a human transforming growth factor-α cDNA results in transformation. Cell 46:301–309, 1986.PubMedCrossRefGoogle Scholar
  101. Sainsbury, J.R., Farndon, J.R., Needham, G.K., Malcolm, A.J. and Harris, A.L. Epidermalgrowth-factor receptor status as predictor of early recurrence of and death from breast cancer. Lancet i:1398–1402, 1987.Google Scholar
  102. Sairenji, M., Suzuki, K., Murakami, K., Motohashi, H., Okamoto, T. and Umeda, M. Transforming growth factor activity in pleural and peritoneal effusions from cancer and non-cancer patients. Jpn. J. Cancer Res. (Gann) 78:814–820, 1987.Google Scholar
  103. Salomon, D.S. and Kidwell, W.R. Tumor associated growth factors in malignant rodent and human mammary epithelial cells. In: Breast Cancer: Cellular and Molecular Biology edited by M.E. Lippman and R.B. Dickson. Kluwer Press, Boston, pp. 363–390, 1988.CrossRefGoogle Scholar
  104. Salomon, D.S., Perroteau, I., Kidwell, W.R., Tarn, J. and Derynck, R. Loss of growth responsiveness to epidermal growth factor and enhanced production of alpha-transforming growth factors in ras-transformed mouse mammary epithelial cells. J. Cell. Physiol. 130:397–409, 1987.PubMedCrossRefGoogle Scholar
  105. Sandgren, E.P., Luetteke, N.C., Palmiter, R.D., Brinster, R.L. and Lee, D.C. Overexpression of TGFα in transgenic mice: induction of epithelial hyperplasia, pancreatic metaplasia and carcinoma of the breast. Cell 61:1121–1135, 1990.PubMedCrossRefGoogle Scholar
  106. Schoenberger, C.A., Andres, A.C., Groner, B., van der Valk, M., LeMeur, M. and Gerlinger, P. Targeted c-myc gene expression in mammary glands of transgenic mice induces mammary tumors with constitutive mild protein gene transcription. EMBO J., 7:169–175, 1988.Google Scholar
  107. Shankar, V., Ciardiello, F., Kim, N., Derynck, R., Liscia, D.S., Merlo, G., Langton, B.C., Sheer, D., Callahan, R., Bassin, R.H., Lippman, M.E., Hynes, N. and Salomon, D.S., 1989, Transformation of normal mouse mammary epithelial cells following transfection with a human transforming growth factor alpha cDNA. Mol. Carcinogen. 2:1–11, 1989.CrossRefGoogle Scholar
  108. Shoyab, M., Plowman, G.D., McDonald, V.L., Bradley, J.G. and Todaro, G.J. Structure and function of human amphiregulin: a member of the epidermal growth factor family. Science 243:1074–1076, 1989.PubMedCrossRefGoogle Scholar
  109. Silberstein, G.B. and Daniel, C.W. Reversible inhibition of mammary gland growth by transforming growth factor-β. Science 237:291–293, 1987.PubMedCrossRefGoogle Scholar
  110. Silberstein, G.B., Strickland, P., Coleman, S. and Daniel, C.W. Epithelium-dependent extracellular matrix sytheses in transforming growth factor βl-growth inhibited mouse mammary gland. J. Cell Biol. 110:2209–2219, 1990.PubMedCrossRefGoogle Scholar
  111. Sinn, E., Mullen, W., Pattengale, P., Tepler, I., Wallace, R. and Leder, P. Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49:465–475, 1987PubMedCrossRefGoogle Scholar
  112. Slamon, D.J., Godulphin, W., Jones, L.A., Holt, J.A., Wong, S.G., Keith, D.E., Levin, W.J., Stuart, S.G., Udove, J., Ullrich, A. and Press, M.J. Studies of the HER-2 /neu protooncogene in human breast and ovarian cancer. Science 244:621–624, 1989.CrossRefGoogle Scholar
  113. Spitzer, E., Grosse, R., Kunde, D. and Schmidt, H.E. Growth of mammary epithelial cells in breast-cancer biopsies correlates with EGF binding. Int. J. Cancer 39:279–282, 1987.PubMedCrossRefGoogle Scholar
  114. Sporn, M.B. and Roberts, A.B. Peptide growth factors and inflammation, tissue repair, and cancer. J. Clin. Inv. 78:329–332, 1986.CrossRefGoogle Scholar
  115. Sporn, M.B. and Todaro, G.J. Autocrine secretion and malignant transformation of cells. N. Engl. J. Med. 303:878–880, 1980.PubMedCrossRefGoogle Scholar
  116. Stampfer, M.R. Isolation and growth of human mammary epithelial cells. J. Tiss. Cult. Meth. 9:107–115, 1985.CrossRefGoogle Scholar
  117. Stampfer, M.R. and Bartley, J.C. Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo-a-pyrene. Proc. Nat’l Acad. Sci. (U.S.A.) 82:2394–2398, 1985.CrossRefGoogle Scholar
  118. Steeg, P.S., Bevilacqua, G., Rosengard, A.M., Croce, V. and Liotta, L.A. Altered expression of Nm23, a gene associated with low tumor metastatic potential, during adenovirus 2 Ela inhibition of experimental metastases. Cancer Res. 48:6550–6554, 1988.PubMedGoogle Scholar
  119. Stern, D.F., Hare, D.L., Cecchini, M.A. and Weinberg, R.A. Construction of a novel oncogene based on synthetic sequences encoding epidermal growth factor. Science 235:321–324, 1987.PubMedCrossRefGoogle Scholar
  120. Stern, D.F., Roberts, A.B., Roche, N.S., Sporn, M.B. and Weinberg, R.A. Differential responsiveness of myc-and ras-transfected cells to growth factors: selective stimulation of myc-transfected cells by epidermal growth factor. Mol. Cell. Biol. 6:870–877, 1986.PubMedGoogle Scholar
  121. Stromberg, K., Hudgins, R. and Orth, D.N. Urinary TGFs in neoplasia: immunoreactive TGF-α in the urine of patients with disseminated breast carcinoma. Biochem. Biophys. Res. Comm. 144:1059–1067, 1987.PubMedCrossRefGoogle Scholar
  122. Sunderland, M.C. and McGuire, W.L. Oncogenes as clinical prognostic indicators. In: Regulatory Mechanisms in Breast Cancer, (Lippman, M.E. and Dickson, R.B., eds.), Kluwer Academic Publishers, Norwell, Massachusetts, pp. 3–22, 1990.Google Scholar
  123. Travers, M.R., Barrett-Lee, P.J., Berger, U., Luqmani, Y.A., Gazet, J-C., Powles, T.J. and Coombes, R.C. Growth factor expression in normal, benign, and malignant breast tissue. Brit. Med. J. 296:1621–1630, 1988.CrossRefGoogle Scholar
  124. Valverius, E.M., Bates, S.E., Stampfer, M.R., Clarke, R., McCormick, F., Salomon, D.S., Lippman, M.E. and Dickson, R.B. Transforming growth factor alpha production and EGF receptor expression in normal and oncogene transformed human mammary epithelial cells. Mol. Endocrinol. 3:203–214, 1989.PubMedCrossRefGoogle Scholar
  125. Valverius, E.M., Ciardiello, F., Heldin, N.E., Blondel, B., Merlo, G., Smith, G., McGready, M., Stampfer, M.R., Lippman, M.E., Dickson, R.B. and Salomon, D.S. Stromal influences on transformation of human mammary epithelial cells expressing c-myc and SV40T. J. Cellular Physiol. 145:207–216, 1990.CrossRefGoogle Scholar
  126. Valverius, E.M., Walker-Jones, D., Bates, S.E., Stampfer, M.R., Clarke, R., McCormick, F., Dickson, R.B. and Lippman, M.E. Production and responsiveness to transforming growth factor β in normal and oncogene transformed human mammary epithelial cells. Cancer Res. 49:6214–6269, 1989.Google Scholar
  127. Varlay, J.M., Swallow, J.E., Brammer, V.J., Wittaker, J.L., and Waekor, R.A. Alterations to either c-erbB2 (neu) or c-myc protooncogenes in breast carcinomas correlate with short term prognosis. Oncogene 1:423–430, 1987.Google Scholar
  128. Velu, T.J., Beguinot, L., Vass, W.C., Willingham, M.C., Merlino, G.T., Pastan, I. and Lowy, D.R. pidermal growth factor-dependent transformation by a human EGF receptor proto-oncogene. Science 238:1408–1450, 1987.PubMedCrossRefGoogle Scholar
  129. Vonderhaar, B.K. Regulation of development of the normal mammary gland by hormones and growth factors. In: Breast Cancer: Cellular and Molecular Biology (Edited by M.E. Lippman and R.B. Dickson), Kluwer Press, Boston, pp. 251–266, 1988.CrossRefGoogle Scholar
  130. Walker-Jones, D., Valverius, E.M., Stampfer, M.R., Lippman, M.E. and Dickson, R.B. Transforming growth factor ß (TGFß) stimulates expression of epithelial membrane antigen in normal and oncogene transformed human mammary epithelial cells. Cancer Res. 49:6407–6411, 1989.PubMedGoogle Scholar
  131. Watanabe, S., Lazar, E. and Sporn, M.B. Transformation of normal rat kidney (NRK) cells by an infectious retrovirus carrying a synthetic rat type α transforming growth factor gene. Proc. Nat’l. Acad. Sci. (U.S.A.) 84:1258–1262, 1987.CrossRefGoogle Scholar
  132. Weinberg, R.A. The retinoblastoma gene and cell growth control. Trends in Biochem. Sci. 18:199–202, 1990.CrossRefGoogle Scholar
  133. Weisz, A., Cicatiello, L., Perisco, E., Scalona, M., and Bresciani, ?? Estrogen stimulates transcription of c-jun protooncogene. Mol. Endocrinol. 4:1041–1050, 1990.PubMedCrossRefGoogle Scholar
  134. Welsch, C.W. Host factors affecting the growth of carcinogen-induced rat mammary carcinomas: a review and tribute to Charles Brenton Huggins, Cancer Research 45:3415–3443, 1985.PubMedGoogle Scholar
  135. Yee, D., Cullen, K.J., Paik, S., Perdue, J.F., Hampton, B., Schwartz, A., Lippman, M.E. and Rosen, N. Insulin-like growth factor II mRNA expression in human breast cancer. Cancer Res. 48:6691–6696, 1988.PubMedGoogle Scholar
  136. Yee, D., Rosen, N., Favoni, R. and Cullen, K.J. The insulin-like growth factors, their receptors and their binding proteins in breast cancer. In: Regulation of Breast Cancer Edited by M.E. Lippman and R.B. Dickson, Kluwer Press, Boston, pp. 93–106, 1990.Google Scholar
  137. Zugmaier, G., Knabbe, C., Deschauer, B., Lippman, M.E. and Dickson, R.B. Inhibition of anchorage independent growth of estrogen receptor positive and estrogen receptor negative human breast cancer cell lines by TGFβ and TGFβ2, J. Cell Physiol., 141:353–361, 1989.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Robert B. Dickson
    • 1
  • Michael D. Johnson
    • 1
  • Dorraya El-Ashry
    • 1
  • Yenian Eric Shi
    • 1
  • Mozeena Bano
    • 1
  • Gerhard Zugmaier
    • 1
  • Barbara Ziff
    • 1
  • Marc E. Lippman
    • 1
  • Susan Chrysogelos
    • 1
  1. 1.Vincent T. Lombardi Cancer CenterGeorgetown University HospitalUSA

Personalised recommendations