Skip to main content

Breast Cancer: Influence of Endocrine Hormones, Growth Factors and Genetic Alterations

  • Chapter
Book cover The Underlying Molecular, Cellular and Immunological Factors in Cancer and Aging

Abstract

Breast cancer is a disease whose frequency as well as pathologic characteristics vary markedly with age and sex. Women develop breast cancer with an incidence of approximately 1 in 10 in the United States, about 100 times the frequency in men. In women, the incidence of breast cancer increases with increasing age, but the rate of increase drops off sharply at the age of menopause (Pike et al., 1981). Breast cancer is more likely in postmenopausal than in premenopausal women to be positive for the receptor for estrogen (Ottman et al., 1981). Estrogen receptor positive breast cancer, whether postmenopausal or premenopausal, is associated with better prognosis than receptor negative breast cancer (Sunderland and McGuire, 1990). These statistics have contributed to the view that exposure of the mammary gland to ovarian estrogens (and progestins) is critical to onset and malignant progression of breast cancer. Indeed, perimenarchal loss of ovarian function can result in a decrease in breast cancer risk by a factor of 100 to about that found in men (Brown, 1981). Furthermore, ovariectomy and/or antiestrogenic and antiprogestational drugs have been successfully used in treatment of breast cancer (lino et al., 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, T.J., Battersby, S. and Macintyre, C.C.A. Proliferative and secretory activity in human breast during natural and artificial menstrual cycles. American J. of Pathology, 130:193–204, 1988.

    Google Scholar 

  • Andrea, A.C., Schoenberger, C.A., Grover, B., Hennighauser, L., LeMaur, M. and Gerlinger, P. Ha-ras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal regulation and tumor incidence in transgenic mice. Proc. Nat’l. Acad. Sci. USA. 84:1299–1303, 1987.

    Article  Google Scholar 

  • Anzano, M.A., Roberts, A.B., De Larco, J.E., Wakefield, L.M., Assoian, R.K., Roche, N.S., Smith, J.M., Lazarus, J.E. and Sporn, M.B. Increased secretion of type ß transforming growth factor accompanies viral transformation of cells. Mol. Cell. Biol. 5:242–250, 1985.

    PubMed  CAS  Google Scholar 

  • Anzano, M.A., Roberts, A.B., Smith, J.M., Sporn, M.B. and DeLarco, J.E. Sarcoma growth factor from conditioned medium of virally transformed cells is composed of both type α and type ß transforming growth factors. Proc. Natl. Acad. Sci. (U.S.A.) 80:6264–6268, 1983.

    Article  CAS  Google Scholar 

  • Arrick, B.A., Korc, M. and Derynck, R. Differential regulation of three transforming growth factor β species in human breast cancer cell lines by estradiol. Cancer Res., 50:299–303, 1990.

    PubMed  CAS  Google Scholar 

  • Artega, C.L., Hanauske, A.R., Clark, G.M., Osborne, C.K., Hazarika, P., Pardue, R.L., Tio, F. and Von Hoff, D.D. Immunoreactive alpha transforming growth factor (IrαTGF) activity in effusions from cancer patients: a marker of tumor burden and patient prognosis. Cancer Res. 48:5023–5028, 1988a.

    Google Scholar 

  • Artega, C.L., Tandon, A.K., Von Hoff, D.D. and Osborne, C.K. Transforming growth factor ß: potential autocrine growth inhibitor of estrogen receptor-negative human breast cancer cells. Cancer Res., 48:3898–3903, 1988b.

    Google Scholar 

  • Bano, M., Kidwell, W.R., Lippman, M.E. and Dickson, R.B. Characterization of MDGF-1 receptor in human mammary epithelial cell liver. J. Biol. Chem., 265:1874–1880, 1990a.

    PubMed  CAS  Google Scholar 

  • Bano, M., Lupu, R., Kidwell, W.R., Lippman, M.E. and Dickson, R.B. Characterization of MDGF1 and its receptor in human breast cancer cells. Proceedings of the American Association for Cancer Research, Washington, D.C., 1990b.

    Google Scholar 

  • Bano, M., Solomon, D.S. and Kidwell, W.R. Purification of mammary derived growth factor 1 (MDGF1) from human milk and mammary tumors. J. Biol. Chem. 260:5745–5752, 1985.

    PubMed  CAS  Google Scholar 

  • Bates, S.E., Davidson, N.E., Valverius, E.M., Dickson, R.B., Freter, C.E., Tarn, J.P., Kudlow, J.E., Lippman, M.E. and Salomon, D.S. Expression of transforming growth factor alpha and its mRNA in human breast cancer: its regulation by estrogen and its possible functional significance. Mol. Endo. 2:543–555, 1988.

    Article  CAS  Google Scholar 

  • Bates, S.E., McManaway, M.E., Lippman, M.E. and Dickson, R.B. Characterization of estrogen responsive transforming activity in human breast cancer cell lines. Cancer Res. 46:1707–1713, 1986.

    PubMed  Google Scholar 

  • Bates, S.E., Valverius, E.M., Ennis, B.W., Bronzert, D.A., Sheridan, J.P., Stampfer, M.R., Mendelsohn, S., Lippman, M.E. and Dickson, R.B. Expression of the transforming growth factor α/Epidermal growth factor receptor pathway in normal human breast epithelial cells. Endocrinology 126:596–607, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Beatson, G.T. On the treatment of inoperable cases of carcinoma of the mamma: suggestion for a new method of treatment, with illustrative cases. Lancet 2:104–107, 1986.

    Google Scholar 

  • Bohmer, F.D., Kraft, R., Otto, A., Wernstedt, C., Hellman, U., Kurtz, A., Mullen, T., Rohde, K., Etzold, G., Lehmann, W., Langen, P., Heldin, C.H. and Grosse, R. Identification of a Polypeptide growth inhibitor from bovine mammary gland. J. Biol. Chem. 262:15137–15143, 1987.

    PubMed  CAS  Google Scholar 

  • Bonilla, M., Ramirez, M., Lopez-Cuento, J., and Gariglio, P. In vivo amplification and rearrangements of c-myc oncogene in human breast tumors. J. Nat’l. Cancer Inst., 80:665–671, 1988.

    Article  CAS  Google Scholar 

  • Bronzert, D.A., Bates, S.E., Sheridan, J.A., Lindsay, R., Valverius, E.M., Stampfer, M.R., Lippman, M.E. and Dickson, R.B. TGFβ induces PDGF mRNA and PDGF secretion while inhibiting growth in normal human mammary epithelial cells. Molec. Endocrinol. 4:981–989, 1990.

    Article  CAS  Google Scholar 

  • Brown, J.B. Hormone profiles in young women at risk for breast cancer: A study of ovarian function during thelarch, menarche and menopause and after childbirth. In: Banbury Report 8: Hormones and Cancer. Edited by Pike, M.C., Siiteri, P.K. and Welsch, C.W. Cold Spring Harbor Laboratory, pp. 33-56, 1981.

    Google Scholar 

  • Cheifetz, S., Bassols, A., Stanley, K., Ohta, M., Greenberger, J. and Massague, J. Heterodimeric Transforming Growth Factor ß. J. Biol. Chem. 263:10783–10790, 1988.

    PubMed  CAS  Google Scholar 

  • Ciardiello, F., Hynes, N., Kim, N., Valverius, E.M., Lippman, M.E. and Salomon, D.S. Transformation of mouse mammary epithelial cells with the Ha-ras but not the neu oncogene results in a gene dosage-dependant increase in transforming growth factor α production. FEBS Letters 250:474–478, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Ciardiello, F., Kim, N., Hynes, N., Jaggo, R., Redmond, S., Liscia, D.S., Sanfilippo, B., Mario, G., Callahan, R., Kidwell, W.R. and Salomon, D.S. Induction of transforming growth factor α expression in mouse mammary epithelial cells after transformation with a point-mutated c-Ha-ras protooncogene. Mol. Endocrinol 2:1202–1216, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Ciardiello, F., McGready, M., Kim, N., Basalo, F., Hynes, N., Langton, B.C., Yokozaki, H., Sucki, T., Elliot, J.W., Masui, H., Mendelsohn, J., Soule, H., Russo, J. and Salomon, D. TGFα expression is enhanced in human mammary epithelial cells transformed by an activated c-Ha-ras but not by the c-neu protooncogene and over-expression of the TGFα cDNA leads to transformation. Cell Growth and Differentiation 1:407–420, 1990.

    PubMed  CAS  Google Scholar 

  • Clair, T., Miller, W.R. and Cho-Chung, Y.S. Prognostic significance of the expression of a ras protein with a molecular weight of 21,000 by human breast cancer. Cancer Res., 47:5290–5296, 1987.

    PubMed  CAS  Google Scholar 

  • Clarke, R., Brunner, N., Katz, D., Glanz, P. Dickson, R.B., Lippman, M.E. and Kern, F. The effects of a constitutive production of TGFa on the growth of MCF-7 human breast cancer cells in vitro and in vivo. Mol. Endocrinol., 3:372–380, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, C.L. and Sutherland, R.L. Progestin regulation of cellular proliferation. Endocrine Reviews 11:266–301, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Cline, M., Battifora, H. and Yokota, J.J. Protooncogene abnormal-ities in human breast cancer: Correlations with anatomic features and clinical course of diagnosis. J. Clin. Oncol. 5:999–1006, 1987.

    PubMed  CAS  Google Scholar 

  • Coffey, R.J., Derynck, R., Wilcox, J.N., Bringman, T.S., Goustin, A.S., Moses, H.L. and Pittelkow, M.R. Production and auto-induction of transforming growth factor-α in human keratinocytes. Nature 328:817–820, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Coleman, S. and Daniel, C.W. Inhibition of mouse mammary ductal morphogenesis and down regulation of the EGF receptor by epidermal growth factor. Developmental Biology 137:425–433, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Cullen, K.J., Hill, S., Paik, S., Smith, H.S., Lippman, M. and Rosen, N. Growth factor mRNA expression by human breast fibroblasts from benign and malignant lesions. Proc. Am. Ass. Cancer Res. 1990

    Google Scholar 

  • Daniel, C.W., Silberstein, G.A. and Strickland, P. Direct action of 17 β estradiol in mouse mammary ducts analyzed by sustained release implants and steroid autoradiography. Cancer Research 47:6052–6057, 1987.

    PubMed  CAS  Google Scholar 

  • Davidson, N.E., Gelmann, E.P., Lippman, M.E. and Dickson, R.B. Epidermal growth factor receptor gene expression in estrogen receptor-positive and negative human breast cancer cell lines. Mol. Endocrinol. 1:216–223, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Derynck, R. Transforming growth factor α Cell 54:593–595, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Dickson, R.B., Huff, K.K., Spencer, E.M. and Lippman, M.E. Induction of epidermal growth factor-related Polypeptides by estradiol in MCF-7 human breast cancer cells. Endocrinology 118:138–142, 1986a.

    Article  PubMed  CAS  Google Scholar 

  • Dickson, R.B., Kasid, A., Huff, K.K., Bates, S., Knabbe, C., Bronzert, D., Gelmann, E.P. and Lippman, M.E. Activation of growth factor secretion in tumorigenic states of breast cancer induced by 17-ß-estradiol or v-rasH oncogene. Proc. Nat’l. Acad. Sci. (U.S.A.) 84:837–841, 1987.

    Article  CAS  Google Scholar 

  • Dickson, R.B. and Lippman, M.E. Control of human breast cancer by estrogen, growth factors, and oncogenes. In: Breast Cancer: Cellular and Molecular Biology edited by M.E. Lippman and R.B. Dickson, Kluwer Press, Boston, pp. 119–166, 1988.

    Chapter  Google Scholar 

  • Dickson, R.B., McManaway M.E., and Lippman, M.E. Estrogen-induced factors of breast cancer cells partially replace estrogen to promote tumor growth. Science 232:1540–1543, 1986b.

    Article  PubMed  CAS  Google Scholar 

  • Di Fiore, P.P., Pierce, J.H., Fleming, T.P., Hazan, R., Ullrich, A., King, C.R., Schlessinger, J. and Aaronson, S.A. Overexpression of the human EGF receptor confers an EGF-dependent transformed phenotype to NIH 3T3 cells. Cell 51:1063–1070, 1987.

    Article  PubMed  Google Scholar 

  • Di Fiore, P.P., Pierce, J.H., Kraus, M.H., Segatto, O., King, C.R. and Aaronson, S.A. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science 237:178–182, 1987.

    Article  PubMed  Google Scholar 

  • Dubik, D., Dembinski, T.C. and Shiu, R.P.C. Stimulation of c-myc oncogene expression associated with estrogen-induced proliferation of human breast cancer cells. Cancer Research 47:6517–6521, 1987.

    PubMed  CAS  Google Scholar 

  • Dulbecco, R. Experimental studies in mammary development and cancer: relevance to human cancer. Advances in Oncology 5:3–6, 1990.

    Google Scholar 

  • Eckert, K., Granetzny, A., Fischer, J., Nexo, E. and Grosse, R. An Mr 43,000 epidermal growth-factor related protein purified from the urine of breast cancer patients. Cancer Research 50:642–647, 1990.

    PubMed  CAS  Google Scholar 

  • Ennis, B.W., Valverius, E.M., Lippman, M.E., Bellot, F., Kris, R., Schlessinger, J., Masui, H., Goldberg, A., Mendelsohn, J. and Dickson, R.B. Anti EGF receptor antibodies inhibit the autocrine stimulated growth of MDA-MB-468 breast cancer cells. Mol. Endocrinol. 3:1830–1838, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Ervin, P.R., Kaminski, R.C., Cody, R.C. and Wicha, M.S. Production of mammastatin, a tissue specific growth inhibitor, by normal human mammary epithelial cells. Science 244:1585–1587, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Escot, G., Theillet, G., Lidereau, R., Spyratos, F., Champeme, M.H., Gest, J. and Callahan, R. Geneticalteration of the c-myc proto-oncogene in human primary breast carcinomas. Proa Nat’l Acad. Sci. (U.S.A.) 83:4834–4838, 1986.

    Article  CAS  Google Scholar 

  • Finzi, E., Fleming, T., Segatto O., Pennington, C.Y., Bringman, T.S., Derynck, R. and Aaronson, S.A. The human transforming growth factor type a coding sequence is not a direct-acting oncogene when overexpressed in NIH 3T3 cells. Proc. Nat’l. Acad. Sci. (U.S.A.) 84:3733–3737, 1987.

    Article  CAS  Google Scholar 

  • Foekens, J.A., Portengen, M., Janssen, M. and Klijn, J.G.M. Insulin-like growth factor I receptors and insulin-like growth factor I activity in primary human breast cancer. Cancer 63:2139–2147, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J. and Klagsbrun, M. Angiogenic Factors. Science 235:442–447, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Goustin, A.S., Leof, E.B., Shipley, G.D. and Moses, H.L. Growth factors and cancer. Cancer Res. 46:1015–1029, 1986.

    PubMed  CAS  Google Scholar 

  • Gregory, H., Thomas, C.E., Willshire, L.R., Young, J.A., Anderson, H., Baildan, A. and Howell, A. Epidermal and transforming growth factor α in patients with breast tumors. British J. Cancer 59:605–609, 1989.

    Article  CAS  Google Scholar 

  • Hammond, S.L., Ham, R.G. and Stampfer, M.R. Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract. Proc. Natl Acad. Sci. (USA.), 81:5435–5439, 198

    Article  CAS  Google Scholar 

  • Heldin, C.H. and Westermark, B. Growth factors: mechanism of action and relations to oncogenes. Cell 37:9–20, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Horan-Hand, P., Vilase, V., Thor, A., Ohuchi, N. and Schlom, J. Quantitation of Harvey ras p21 enhanced expression in human breast and colon carcinomas. J. Nat’l. Cancer Inst. 79:59–65, 1987.

    Google Scholar 

  • Hudziak, R.M., Schlessinger, J. and Ullrich, A. Increased expression of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH 3T3 cells. Proc. Natl Acad, Sci. (USA.) 84:7159–7162, 1987.

    Article  CAS  Google Scholar 

  • Huff, K.K., Lippman, M.E., Spencer, E.M. and Dickson, R.B. Secretion of an insulin-like growth factor I-related Polypeptide by human breast cancer cells. Cancer Res. 46:4613–4619, 1986.

    PubMed  CAS  Google Scholar 

  • lino, Y., Gibson, D.F.C. and Jordan, V.C. Antiestrogen therapy for breast cancer: Current strategies and potential causes for therapeutic failure, in: Regulatory Mechanisms in Breast Cancer edited by Lippman, M.E. and Dickson, R.B., Kluwer Academic Publishers, Norwell, Massachusetts, pp. 221–238, 1990.

    Google Scholar 

  • Jabara, A.G., Toyne, PH., Harcourt, A.G. Effects of time and duration of progesterone administration on mammary tumors induced by DMBA in Sprague Dawley rats. Br. J. Cancer 27:63–71, 1973.

    Article  PubMed  CAS  Google Scholar 

  • Jhappan, C., Stahle, C., Harkins, R.N., Fausto, N., Smith, G.H. and Merlino, G.T. TGFα overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas. Cell 61:1137–1146, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Kelekar, A. and Cole, M.D. Immortalization by c-myc, H-ras, and Ela oncogenes induces differential cellular gene expression and growth factor responses. Mol. Cell Biol. 7:3899–3907, 1987.

    PubMed  CAS  Google Scholar 

  • King, R.J.B., Wang, D.Y., Daley, R.J. and Darbre, P.D. Approaches to studying the role of growth factors in the progression of breast tumors from the steroid sensitive to insensitive state. J. Steroid Biochem. 34:133–138, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Knabbe, C., Wakefield, L., Flanders, K., Kasid, A., Derynck, R., Lippman, M.E. and Dickson, R.B. Evidence that TGF beta is a hormonally regulated negative growth factor in human breast cancer. Cell 48:417–428, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Koi, M., Afshari, C.A., Annab, LA. and Barrett, J.C. Role of a tumor-suppressor gene in the negative control of anchorage-independent growth of Syrian hamster cells. Proc. Natl Acad. Sci. U.S.A. 86:8773–8777, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Kozma, S.C., Bogaard, M.E., Buser, K., Saurer, S.M., Bos, J.L., Groner, B. and Hynes, N.E. The human c-Kirsten ras gene is activated by a novel mutation in codon 13 in the breast carcinoma cell line MDA-MB 231. Nucleic Acids Research 15:5963–5971, 1988.

    Article  Google Scholar 

  • Kraus, M.H., Issing, W., Miki, T., Popescu, N.C. and Aaronson, S.A. Isolation and characterization of ERBB3, a third member of the ERB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors. Proc. Nat’l. Acad. Sci. U.S.A. 86:9193–9197, 1989.

    Article  CAS  Google Scholar 

  • Kraus, M.H., Yuspa, Y. and Aaronson, S.A. A position 12-activated H-ras oncogene in all Hs578T mammary carcinosarcoma cells but not normal mammary cells of the same patient. Proc. Natl Acad. Sci. U.S.A. 81:5384–5388, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Kurachi, H., Okamoto, S. and Oka, T. Evidence for the involvement of the submandibular gland epidermal growth factor in mouse mammary tumorigenesis. Proc. Nat’l. Acad. Sci. U.S.A. 81:5940–5943, 1985.

    Article  Google Scholar 

  • Kurtz, A., Vogel, F., Funa, K., Heldin, C.H. and Grosse, R. Developmental regulation of mammary-derived growth inhibitor expression in bovine mammary tissue. J. Cell Biol. 110:1779–1789, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Laiho, M., DeCaprio, J.A., Ludlow, J.W., Livingston, D.M. and Massague, J. Growth inhibition by TGFß linked to suppression of retinoblastoma protein phosphorylation. Cell 62:175–185, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Lee, E., Bookstein, R. and Lee, W-H. Role of the retinoblastoma gene in the oncogenesis of human breast carcinoma. In: Regulation of Breast Cancer edited by M.E. Lippman and R.B. Dickson, Kluwer Press, Boston, pp. 23–44, 1990.

    Google Scholar 

  • Leof, E.B., Proper, J.A. and Moses, H.L. Modulation of transforming growth factor type α action by activated ras and c-myc. Mol. Cell Biol. 7:2649–2652, 1987.

    PubMed  CAS  Google Scholar 

  • Liscia, D.S., Merlo, G., Ciardiello, F., Kim, N., Smith, G.H., Callahan, R.H., and Salomon, D.S. Transforming growth factor-α messenger RNA localization in the developing adult rat and human mammary gland by in situ hybridization. Developmental Biology 140:123–131, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Longacre, T.A. and Bartow, S.A. A correlative morphologic study of human breast and endometrium in the menstrual cycle. Am. J. Surg. Path. 10:382–393, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Lupu, R., Colomer, R., Zugmaier, G., Slamon, D. and Lippman, M.E. A ligand for the erbB2oncogene product interacts directly with both the EGF rerceptor and erbB2 Science 249:1552–1554, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Lupu, R., Dickson, R.B. and Lippman, M.E. Biologically active glycosylated TGFα released by estrogen receptor negative human breast cancer cell line. UCLA Symposium on Growth Regulation of Cancer (abstract) 1989.

    Google Scholar 

  • Macias, A., Perez, R., Hägerström, T. and Skoog, L. Identification of transforming growth factoralpha in human primary breast carcinomas. Anticancer Research 7:1271–1280, 1987.

    PubMed  CAS  Google Scholar 

  • Massague, J. Epidermal growth factor-like transforming growth factor. J. Biol. Chem. 258:13606–13613, 1983.

    PubMed  CAS  Google Scholar 

  • Masui, T., Wakefield, L.M., Lechner, J.F., La Veck, M.A., Sporn, M.B. and Harris, C.C., Type ß transforming growth factor is the primary differentiation-inducing serum factor for normal human bronchial epithelial cells. Proc. Nat’l, Acad. Sci. U.S.A. 83:2438–2442, 1986.

    Article  CAS  Google Scholar 

  • Matsui, Y., Halter, S.A., Holt, J.T., Hogan, B.L.M. and Coffey, R. Development of mammary hyperplasia and neoplasia in MMTV-TGFα transgenic mice. Cell 61:1147–1155, 1990.

    Article  PubMed  CAS  Google Scholar 

  • McCarty, K.S. Proliferative stimuli in the normal breast: estrogens or progestins. Human Pathology 20:1137–1138, 1989.

    Article  PubMed  Google Scholar 

  • Medina, D. The preneoplastic state in mouse mammary tumorigenesis. Carcinogenesis 9:1113–1120, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen, T. and Cavenee, W. Suppressors of the malignant phenotype. Cell Growth and Differentiation 1:201–207, 1990.

    PubMed  CAS  Google Scholar 

  • Molinolo, A.A., Lanari, C., Charreau, E.H., Sanjuan, N. and Pasquilini, C.D. Mouse mammary tumors induced by medrony progesterone acetate: immunohistochemistry and hormonal receptors. J. Natl. Cancer Inst. 79:1341–1350, 1987.

    PubMed  CAS  Google Scholar 

  • Murphy, L.C. and Dotzlau, H. Regulation of transforming growth factor β messenger ribonucleic acid abundance in T47D, human breast cancer cells. Mol. Endocrinol. 3:611–617, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, L.C., Murphy, L.J., Dubik, D., Bell, G.I. and Shiu, R.P.C. Epidermal growth factor gene expression in human breast cancer cells: regulation of expression by progestins. Cancer Res. 48:4555–4560, 1988.

    PubMed  CAS  Google Scholar 

  • Murphy, L.J., Sutherland, R.L., Steed, B., Murphy, L.C. and Lazarus, L. Progestin regulation of epidermal growth factor receptor in human mammary carcinoma cells. Mol. Endocrinol. 46:728–734, 1986.

    CAS  Google Scholar 

  • Musgrove, E.A. and Sutherland, R.L. Steroids, growth factors and cell cycle controls in breast cancer. In: Regulation of Breast Cancer edited by Lippman, M.E. and Dickson, R.B. Kluwer Academic Publishers, Norwell, Massachusetts, pp. 305–331, 1990.

    Google Scholar 

  • Nigro, J.M., Baker, S.J., Preisinger, A.C., Jessup, J.M., Hostetter, R., Cleary, K., Bigner, S.H., Davidson, N., Baylin, S., Devilee, P., Glover, T., Collins, F.S., Westin, A., Modali, R., Harris, C.C. and Vogelstein, B. Mutations of the p53 gene occur in diverse tumor types. Nature 232:705–708, 1989.

    Article  Google Scholar 

  • Oka, T., Tsutsumi, O., Kurachi, H., and Okamoto, S. The role of epidermal growth factor in normal and neoplastic growth of mouse mammary epithelial cells. In: Breast Cancer: Cellular and Molecular Biology edited by M.E. Lippman and R.B. Dickson. Kluwer Press, Boston, pp. 343–362, 1988.

    Chapter  Google Scholar 

  • Osborne, C.K., Hamilton, B., Titus, G., Livingston, R.B. Epidermal growth factor stimulation of human breast cancer cells in culture. Cancer Res. 40:2361–2366, 1980.

    PubMed  CAS  Google Scholar 

  • Ottman, R., Hoffman, P.G., and Siiteri, P.K. Estrogen receptor assays in familial and non-familial breast cancer. In: Banbury Report 8: Hormones and Breast Cancer (Pike, M.C., Siiteri, P.K. and Welsch, C.W., eds.), Cold Spring Harbor Laboratory, pp. 191-211, 1981.

    Google Scholar 

  • Paik, S., Hazan, R., Fisher, E.R., Sass, R.E., Fisher, B., Redmond, C., Schlessinger, J., Lippman, M.E. and King, C.R. Pathologic findings from the National Surgical Adjuvant breast and bowel project: prognostic significance of erbB2 protein overexpression in primary breast cancer. J. Clin. Oncol. 8:103–112, 1990.

    PubMed  CAS  Google Scholar 

  • Paul, D. and Schmidt, G.H. Immortalization and malignant transformation of differentiated cells by oncogenes in vitro and in transgenic mice, Critical Reviews in Oncogenesis. 1:307–321, 1989.

    PubMed  CAS  Google Scholar 

  • Perez, R., Pascual, M., Macias, A. and Lage, A. Epidermal growth factor receptors in human breast cancer. Breast Cancer Reg. Treat. 4:189–193, 1984.

    Article  CAS  Google Scholar 

  • Perroteau, I., Salomon, D., DeBortoli, M., Kidwell, W., Hazarika, P., Pardue, R., Dedman, J. and Tarn, J. Immunological detection and quantitation of alpha transforming growth factors in human breast carcinoma cells. Breast Cancer Res. Treat. 7:201–210, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Pike, M.D., Henderson, B.E., and Casagrande, J.T. The epidemiology of breast cancer as it relates to menarche pregnancy and menopause. In: Banbury Report 8: Hormones and Breast Cancer (Pike, M.C., Siiteri, P.K. and Welsch, C.W., eds.), Cold Spring Harbor Laboratory, pp. 3-21, 1981.

    Google Scholar 

  • Plowman, G.D., Green, J.M., McDonald, V.C., Neubauer, M.G., Disteche, C.M., Todaro, G.J. and Shoyab, M. The amphiregulin gene encodes a novel epidermal growth factorrelated protein with tumor inhibitory activity. Molecular and Cellular Biology 10:1969–1981, 1990.

    PubMed  CAS  Google Scholar 

  • Ponder, B.A.J. Inherited predisposition to cancer. Trends in Genetics 6:213–218, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Rastinejad, F., Polverini, PJ. and Bouck, N.P. Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 56:345–355, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Riedel, H., Massoglia, S., Schlessinger, J. and Ullrich, A. Ligand activation of overexpressed epidermal growth factor receptors transforms NIH 3T3 mouse fibroblasts. Proc. Nat’l. Acad. Sci. (U.S.A.) 85:1477–1482, 1988.

    Article  CAS  Google Scholar 

  • Robinson, S.P., and Jordan, V.C Reversal of the antitumor effects of tamoxifen by progesterone in the DMBA-induced rat mammary carcinoma model, Cancer Research. 47:5386–5390, 1987.

    PubMed  CAS  Google Scholar 

  • Rosenthal, A., Lindquist, P.B., Bringman, T.S., Goeddel, D.V. and Derynck, R. Expression in rat fibroblasts of a human transforming growth factor-α cDNA results in transformation. Cell 46:301–309, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Sainsbury, J.R., Farndon, J.R., Needham, G.K., Malcolm, A.J. and Harris, A.L. Epidermalgrowth-factor receptor status as predictor of early recurrence of and death from breast cancer. Lancet i:1398–1402, 1987.

    Google Scholar 

  • Sairenji, M., Suzuki, K., Murakami, K., Motohashi, H., Okamoto, T. and Umeda, M. Transforming growth factor activity in pleural and peritoneal effusions from cancer and non-cancer patients. Jpn. J. Cancer Res. (Gann) 78:814–820, 1987.

    CAS  Google Scholar 

  • Salomon, D.S. and Kidwell, W.R. Tumor associated growth factors in malignant rodent and human mammary epithelial cells. In: Breast Cancer: Cellular and Molecular Biology edited by M.E. Lippman and R.B. Dickson. Kluwer Press, Boston, pp. 363–390, 1988.

    Chapter  Google Scholar 

  • Salomon, D.S., Perroteau, I., Kidwell, W.R., Tarn, J. and Derynck, R. Loss of growth responsiveness to epidermal growth factor and enhanced production of alpha-transforming growth factors in ras-transformed mouse mammary epithelial cells. J. Cell. Physiol. 130:397–409, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Sandgren, E.P., Luetteke, N.C., Palmiter, R.D., Brinster, R.L. and Lee, D.C. Overexpression of TGFα in transgenic mice: induction of epithelial hyperplasia, pancreatic metaplasia and carcinoma of the breast. Cell 61:1121–1135, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Schoenberger, C.A., Andres, A.C., Groner, B., van der Valk, M., LeMeur, M. and Gerlinger, P. Targeted c-myc gene expression in mammary glands of transgenic mice induces mammary tumors with constitutive mild protein gene transcription. EMBO J., 7:169–175, 1988.

    Google Scholar 

  • Shankar, V., Ciardiello, F., Kim, N., Derynck, R., Liscia, D.S., Merlo, G., Langton, B.C., Sheer, D., Callahan, R., Bassin, R.H., Lippman, M.E., Hynes, N. and Salomon, D.S., 1989, Transformation of normal mouse mammary epithelial cells following transfection with a human transforming growth factor alpha cDNA. Mol. Carcinogen. 2:1–11, 1989.

    Article  CAS  Google Scholar 

  • Shoyab, M., Plowman, G.D., McDonald, V.L., Bradley, J.G. and Todaro, G.J. Structure and function of human amphiregulin: a member of the epidermal growth factor family. Science 243:1074–1076, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Silberstein, G.B. and Daniel, C.W. Reversible inhibition of mammary gland growth by transforming growth factor-β. Science 237:291–293, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Silberstein, G.B., Strickland, P., Coleman, S. and Daniel, C.W. Epithelium-dependent extracellular matrix sytheses in transforming growth factor βl-growth inhibited mouse mammary gland. J. Cell Biol. 110:2209–2219, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Sinn, E., Mullen, W., Pattengale, P., Tepler, I., Wallace, R. and Leder, P. Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49:465–475, 1987

    Article  PubMed  CAS  Google Scholar 

  • Slamon, D.J., Godulphin, W., Jones, L.A., Holt, J.A., Wong, S.G., Keith, D.E., Levin, W.J., Stuart, S.G., Udove, J., Ullrich, A. and Press, M.J. Studies of the HER-2 /neu protooncogene in human breast and ovarian cancer. Science 244:621–624, 1989.

    Article  Google Scholar 

  • Spitzer, E., Grosse, R., Kunde, D. and Schmidt, H.E. Growth of mammary epithelial cells in breast-cancer biopsies correlates with EGF binding. Int. J. Cancer 39:279–282, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Sporn, M.B. and Roberts, A.B. Peptide growth factors and inflammation, tissue repair, and cancer. J. Clin. Inv. 78:329–332, 1986.

    Article  CAS  Google Scholar 

  • Sporn, M.B. and Todaro, G.J. Autocrine secretion and malignant transformation of cells. N. Engl. J. Med. 303:878–880, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Stampfer, M.R. Isolation and growth of human mammary epithelial cells. J. Tiss. Cult. Meth. 9:107–115, 1985.

    Article  Google Scholar 

  • Stampfer, M.R. and Bartley, J.C. Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo-a-pyrene. Proc. Nat’l Acad. Sci. (U.S.A.) 82:2394–2398, 1985.

    Article  CAS  Google Scholar 

  • Steeg, P.S., Bevilacqua, G., Rosengard, A.M., Croce, V. and Liotta, L.A. Altered expression of Nm23, a gene associated with low tumor metastatic potential, during adenovirus 2 Ela inhibition of experimental metastases. Cancer Res. 48:6550–6554, 1988.

    PubMed  CAS  Google Scholar 

  • Stern, D.F., Hare, D.L., Cecchini, M.A. and Weinberg, R.A. Construction of a novel oncogene based on synthetic sequences encoding epidermal growth factor. Science 235:321–324, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Stern, D.F., Roberts, A.B., Roche, N.S., Sporn, M.B. and Weinberg, R.A. Differential responsiveness of myc-and ras-transfected cells to growth factors: selective stimulation of myc-transfected cells by epidermal growth factor. Mol. Cell. Biol. 6:870–877, 1986.

    PubMed  CAS  Google Scholar 

  • Stromberg, K., Hudgins, R. and Orth, D.N. Urinary TGFs in neoplasia: immunoreactive TGF-α in the urine of patients with disseminated breast carcinoma. Biochem. Biophys. Res. Comm. 144:1059–1067, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Sunderland, M.C. and McGuire, W.L. Oncogenes as clinical prognostic indicators. In: Regulatory Mechanisms in Breast Cancer, (Lippman, M.E. and Dickson, R.B., eds.), Kluwer Academic Publishers, Norwell, Massachusetts, pp. 3–22, 1990.

    Google Scholar 

  • Travers, M.R., Barrett-Lee, P.J., Berger, U., Luqmani, Y.A., Gazet, J-C., Powles, T.J. and Coombes, R.C. Growth factor expression in normal, benign, and malignant breast tissue. Brit. Med. J. 296:1621–1630, 1988.

    Article  CAS  Google Scholar 

  • Valverius, E.M., Bates, S.E., Stampfer, M.R., Clarke, R., McCormick, F., Salomon, D.S., Lippman, M.E. and Dickson, R.B. Transforming growth factor alpha production and EGF receptor expression in normal and oncogene transformed human mammary epithelial cells. Mol. Endocrinol. 3:203–214, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Valverius, E.M., Ciardiello, F., Heldin, N.E., Blondel, B., Merlo, G., Smith, G., McGready, M., Stampfer, M.R., Lippman, M.E., Dickson, R.B. and Salomon, D.S. Stromal influences on transformation of human mammary epithelial cells expressing c-myc and SV40T. J. Cellular Physiol. 145:207–216, 1990.

    Article  CAS  Google Scholar 

  • Valverius, E.M., Walker-Jones, D., Bates, S.E., Stampfer, M.R., Clarke, R., McCormick, F., Dickson, R.B. and Lippman, M.E. Production and responsiveness to transforming growth factor β in normal and oncogene transformed human mammary epithelial cells. Cancer Res. 49:6214–6269, 1989.

    Google Scholar 

  • Varlay, J.M., Swallow, J.E., Brammer, V.J., Wittaker, J.L., and Waekor, R.A. Alterations to either c-erbB2 (neu) or c-myc protooncogenes in breast carcinomas correlate with short term prognosis. Oncogene 1:423–430, 1987.

    Google Scholar 

  • Velu, T.J., Beguinot, L., Vass, W.C., Willingham, M.C., Merlino, G.T., Pastan, I. and Lowy, D.R. pidermal growth factor-dependent transformation by a human EGF receptor proto-oncogene. Science 238:1408–1450, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Vonderhaar, B.K. Regulation of development of the normal mammary gland by hormones and growth factors. In: Breast Cancer: Cellular and Molecular Biology (Edited by M.E. Lippman and R.B. Dickson), Kluwer Press, Boston, pp. 251–266, 1988.

    Chapter  Google Scholar 

  • Walker-Jones, D., Valverius, E.M., Stampfer, M.R., Lippman, M.E. and Dickson, R.B. Transforming growth factor ß (TGFß) stimulates expression of epithelial membrane antigen in normal and oncogene transformed human mammary epithelial cells. Cancer Res. 49:6407–6411, 1989.

    PubMed  CAS  Google Scholar 

  • Watanabe, S., Lazar, E. and Sporn, M.B. Transformation of normal rat kidney (NRK) cells by an infectious retrovirus carrying a synthetic rat type α transforming growth factor gene. Proc. Nat’l. Acad. Sci. (U.S.A.) 84:1258–1262, 1987.

    Article  CAS  Google Scholar 

  • Weinberg, R.A. The retinoblastoma gene and cell growth control. Trends in Biochem. Sci. 18:199–202, 1990.

    Article  Google Scholar 

  • Weisz, A., Cicatiello, L., Perisco, E., Scalona, M., and Bresciani, ?? Estrogen stimulates transcription of c-jun protooncogene. Mol. Endocrinol. 4:1041–1050, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Welsch, C.W. Host factors affecting the growth of carcinogen-induced rat mammary carcinomas: a review and tribute to Charles Brenton Huggins, Cancer Research 45:3415–3443, 1985.

    PubMed  CAS  Google Scholar 

  • Yee, D., Cullen, K.J., Paik, S., Perdue, J.F., Hampton, B., Schwartz, A., Lippman, M.E. and Rosen, N. Insulin-like growth factor II mRNA expression in human breast cancer. Cancer Res. 48:6691–6696, 1988.

    PubMed  CAS  Google Scholar 

  • Yee, D., Rosen, N., Favoni, R. and Cullen, K.J. The insulin-like growth factors, their receptors and their binding proteins in breast cancer. In: Regulation of Breast Cancer Edited by M.E. Lippman and R.B. Dickson, Kluwer Press, Boston, pp. 93–106, 1990.

    Google Scholar 

  • Zugmaier, G., Knabbe, C., Deschauer, B., Lippman, M.E. and Dickson, R.B. Inhibition of anchorage independent growth of estrogen receptor positive and estrogen receptor negative human breast cancer cell lines by TGFβ and TGFβ2, J. Cell Physiol., 141:353–361, 1989.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dickson, R.B. et al. (1993). Breast Cancer: Influence of Endocrine Hormones, Growth Factors and Genetic Alterations. In: Yang, S.S., Warner, H.R. (eds) The Underlying Molecular, Cellular and Immunological Factors in Cancer and Aging. Advances in Experimental Medicine and Biology, vol 330. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2926-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2926-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6270-8

  • Online ISBN: 978-1-4615-2926-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics