Skip to main content

The Role of Cholesterol in Mycoplasma Membranes

  • Chapter
Mycoplasma Cell Membranes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 20))

Abstract

Cholesterol is the end product of the sterol biosynthetic pathway in animal cells. The sterol molecule arose necessarily with the advent of an aerobic environment (Bloch, 1983), making it a relative latecomer in the evolutionary development of living cells. Perhaps, as a consequence, sterols are not uniformly distributed among life forms as are, say, amino acids and nucleic acids, but are reserved almost without exception as membrane components of eukaryotic rather than prokaryotic cells. Notable exceptions to the exclusionary rule of sterols in prokaryotes can be found in a few aerobic bacteria (Bird et al., 1971) and in members of the class Mollicutes. Of the three established families comprising the class Mollicutes, the Mycoplasmataceae and Spiroplasmataceae require cholesterol or a related sterol for growth whereas Acholeplasmataceae do not. None of the mycoplasmas* synthesize cholesterol de novo, nor do they generally metabolize or modify the sterol molecule. Rather, mycoplasmas incorporate sterols unchanged from the environment to levels approaching 50 mole% of the total membrane lipid. These features coupled with mycoplasmas’ inherent fatty acid auxotrophy and single membrane structure assure the mycoplasmas a high rank among the organisms of choice for studies aimed at understanding the role of sterols in natural membranes. The degree of control over membrane lipid content one can achieve with mycoplasmas more closely approaches that obtained with model membranes than with most other natural systems used to study sterol structure-function relationships such as yeast, insects, and fibroblasts. Although studies on model membranes have provided valuable information on the functional consequences of sterol-phospholipid interactions, the principles governing both sterol-phospholipid and sterol-protein interactions in the complex milieu of a natural membrane must ultimately be delineated before a full understanding of the role of cholesterol in mycoplasmas and other cells can be reached.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asano, K., and Asano, A., 1988, Binding of cholesterol and inhibitory peptide derivatives with the fusogenic hydrophobic sequence of F-glycoprotein of HVJ (Sendai virus): Possible implication in the fusion reaction, Biochemistry 27:1321–1329.

    Article  PubMed  CAS  Google Scholar 

  • Backer, J. M., and Dawidowicz, E. A., 1981a, Mechanism of cholesterol exchange between phos-pholipid vesicles, Biochemistry 20:3805–3810.

    Article  PubMed  CAS  Google Scholar 

  • Backer, J. M., and Dawidowicz, E. A., 1981b, Transmembrane movement of cholesterol in small unilamellar vesicles detected by cholesterol oxidase, J. Biol. Chem. 256:586–588.

    PubMed  CAS  Google Scholar 

  • Benyoucef, M., Rigaud, J. L., and Leblanc, G., 1982, Cation transport mechanisms in Mycoplasma mycoides var. capri cells. Na+-dependent K+ accumulation, Biochem. J. 208:539–547.

    PubMed  CAS  Google Scholar 

  • Bernheimer, A. W., and Davidson, M., 1965, Lysis of pleuropneumonia-like organisms by staphylococcal and streptococcal toxins, Science 148:1229–1231.

    Article  PubMed  CAS  Google Scholar 

  • Bhakoo, M., Lewis, R. N. A. H., and McElhaney, R. N., 1987, Isolation and characterization of a novel monoacylated glucopyranosyl neutral lipid from the plasma membrane of Acholeplasma laidlawii B, Biochim. Biophys. Acta 922:34–45.

    Article  PubMed  CAS  Google Scholar 

  • Bird, C. W., Lynch, J. M., Pirt, F. J., Reid, W. W., Brooks, C. J. W., and Middleditch, B. S., 1971, Steroids and squalene in Methylococcus capsulatus grown on methane, Nature 230:473–474.

    Article  PubMed  CAS  Google Scholar 

  • Bittman, R., 1988, Sterol exchange between mycoplasma membranes and vesicles, in Biology of Cholesterol (P. L. Yeagle, ed.), pp. 173–195, CRC Press, Boca Raton, Fla.

    Google Scholar 

  • Bittman, R., and Rottem, S., 1976, Distribution of cholesterol between the outer and inner halves of the lipid bilayer of mycoplasma cell membranes, Biochim. Biophys. Acta 71:318–324.

    CAS  Google Scholar 

  • Black, P. N., Said, B., Ghosn, C. R., Beach, J. V., and Nunn, W. D., 1987, Purification and characterization of an outer membrane-bound protein involved in long-chain fatty acid transport in Escherichia coli, Biochemistry 26:1412–1419.

    Article  Google Scholar 

  • Blau, L., and Bittman, R., 1978, Cholesterol distribution between the two halves of the lipid bilayer of human erythrocyte ghost membranes, J. Biol. Chem. 253:8366–8368.

    PubMed  CAS  Google Scholar 

  • Bloch, K., 1965, The biological synthesis of cholesterol, Science 150:19–28.

    Article  PubMed  CAS  Google Scholar 

  • Bloch, K., 1976, On the evolution of a biosynthetic pathway, in: Reflections on Biochemistry (A. Kornberg, B. L. Horecker, L. Cornudella, and J. Oro, eds.), Pergamon Press, Elmsford, N.Y., pp, 143–150.

    Google Scholar 

  • Bloch, K., 1983, Sterol structure and membrane function, CRC Crit. Rev. Biochem. 14:47–92.

    Article  PubMed  CAS  Google Scholar 

  • Bloj, B., and Zilversmit, D. B., 1976, Asymmetry and transposition rates of phosphatidylcholine in rat erythrocyte ghosts, Biochemistry 15:1277–1283.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M. S., and Goldstein, J. L., 1986, A receptor-mediated pathway for cholesterol homeostasis, Science 232:34–47.

    Article  PubMed  CAS  Google Scholar 

  • Carruthers, A., and Melchoir, D. L., 1984, Human erythrocyte hexose transporter activity is governed by bilayer lipid composition in reconstituted vesicles, Biochemistry 23:6901–6911.

    Article  PubMed  CAS  Google Scholar 

  • Casey, P. J., Solski, P. A., Der, C. S., and Buss, J., 1989, P21ras is modified by a farnesyl isoprenoid, Proc. Natl. Acad. Sci. USA 86:1167–1177.

    Article  Google Scholar 

  • Clark, A. J., and Bloch, K., 1959, Function of sterols in Dermestes vulpinus, J. Biol. Chem. 234:2583–2588.

    PubMed  CAS  Google Scholar 

  • Clejan, S., and Bittman, R., 1984a, Kinetics of cholesterol and phospholipid exchange between Mycoplasma gallisepticum cells and lipid vesicles, J. Biol. Chem. 259:441–448.

    PubMed  CAS  Google Scholar 

  • Clejan, S., and Bittman, R., 1984b, Distribution and movement of sterols with different side chain structures between the two leaflets of the membrane bilayer of mycoplasma cells, J. Biol. Chem. 259:449–455.

    PubMed  CAS  Google Scholar 

  • Clejan, S., Bittman, R., and Rottem, S., 1978, Uptake, transbilayer distribution, and movement of cholesterol in growing Mycoplasma capricolum cells, Biochemistry 17:4579–4583.

    Article  PubMed  CAS  Google Scholar 

  • Clejan, S., Bittman, R., and Rottem, S., 1981, Effect of sterol structure and exogenous lipids on the transbilayer distribution of sterols in the membranes of Mycoplasma capricolum, Biochemistry 20:2200–2203.

    Article  PubMed  CAS  Google Scholar 

  • Cluss, R. G., Johnson, J. K., and Somerson, N. L., 1983, Liposomes replace serum for cultivation of fermenting mycoplasmas, Appl. Environ. Microbiol. 46:370–374.

    PubMed  CAS  Google Scholar 

  • Colbeau, A., Nachbaur, J., and Vignais, P. M., 1971, Enzymic characterization and lipid composition of rat liver subcellular membranes, Biochim. Biophys. Acta 249:462–492.

    Article  PubMed  CAS  Google Scholar 

  • Coleman, R., and Finean, J. B., 1966, Preparation and properties of isolated plasma membranes from guinea pig tissue, Biochim. Biophys. Acta 125:197–206.

    Article  CAS  Google Scholar 

  • Cornell, R. B., and Goldfine, H., 1983, The coordination of sterol and phospholipid synthesis in cultured myogenic cells. Effect of cholesterol synthesis inhibition on the synthesis of phosphatidylcholine, Biochim. Biophys. Acta 750:504–520.

    Article  PubMed  CAS  Google Scholar 

  • Cornell, R. B., and Horwitz, A. F., 1980, Apparent coordination of the biosynthesis of lipids in cultured cells: Its relationship to the regulation of the membrane sterol:phospholipid ratio and cell cycling, J. Cell Biol. 86:810–819.

    Article  PubMed  CAS  Google Scholar 

  • Dahl, C., and Dahl, J., 1988, Cholesterol and cell function, in: Biology of Cholesterol (P. L. Yeagle, ed.), pp. 147–171, CRC Press, Boca Raton, Fla.

    Google Scholar 

  • Dahl, C. E., Dahl, J. S., and Bloch, K., 1980a, Effect of alkyl-substituted precursors of cholesterol on artificial and natural membranes and on the viability of Mycoplasma capricolum, Biochemistry 19:1462–1467.

    Article  PubMed  CAS  Google Scholar 

  • Dahl, C. E., Dahl, J. S., and Bloch, K., 1980b, Effects of cycloartenol and lanosterol on artificial and natural membranes, Biochem. Biophys. Res. Commun. 92:221–228.

    Article  PubMed  CAS  Google Scholar 

  • Dahl, C. E., Dahl, J. S., and Bloch, K., 1983, Proteolipid formation in Mycoplasma capricolum, J. Biol. Chem. 258:11814–11818.

    PubMed  CAS  Google Scholar 

  • Dahl, C., Biemann, H. P., and Dahl, J., 1987, A protein kinase antigenically related to pp60v-src possibly involved in yeast cell cycle control: Positive in vivo regulation by sterol, Proc. Natl. Acad. Sci. USA 84:4012–4016.

    Article  PubMed  CAS  Google Scholar 

  • Dahl, J., 1988, Uptake of fatty acid by Mycoplasma capricolum, J. Bacteriol. 170:2022–2026.

    PubMed  CAS  Google Scholar 

  • Dahl, J. S., and Dahl, C. E., 1983, Coordinate regulation of unsaturated phospholipid, RNA, and protein synthesis in Mycoplasma capricolum by cholesterol, Proc. Natl. Acad. Sci. USA 80:692–696.

    Article  PubMed  CAS  Google Scholar 

  • Dahl, J. S., Dahl, C. E., and Bloch, K., 1980, Sterols in membranes: Growth characteristics and membrane properties of Mycoplasma capricolum cultured on cholesterol and lanosterol, Biochemistry 19:1467–1472.

    Article  PubMed  CAS  Google Scholar 

  • Dahl, J. S., Dahl, C. E., and Bloch, K., 1981, Effect of cholesterol on macromolecular synthesis and fatty acid uptake by Mycoplasma capricolum, J. Biol. Chem. 256:87–91.

    PubMed  CAS  Google Scholar 

  • de Kruyff, B., Demel, R. A., and vanDeenen, L. L. M., 1972, The effect of cholesterol and epicholesterol incorporation on the permeability and the phase transition of intact Acholeplasma laidlawii, Biochim. Biophys. Acta 255:331–347.

    Article  PubMed  Google Scholar 

  • de Kruyff, B., deGreef, W. J., vanEyk, R. V. W., Demel, R. A., and vanDeenen, L. L. M., 1973, The effect of different fatty acid and sterol composition on the erythritol flux through the cell membrane of Acholeplasma laidlawii, Biochim. Biophys. Acta 298:479–499.

    Article  PubMed  Google Scholar 

  • Demel, R. A., and de Kruyff, B., 1976, The function of sterols in membranes, Biochim. Biophys. Acta 457:109–132.

    Article  PubMed  CAS  Google Scholar 

  • Edward, D. G., and Fitzgerald, W. A., 1951, Cholesterol in the growth of organisms of the pleuropneumonia group, J. Gen. Microbiol. 5:576–586.

    Article  PubMed  CAS  Google Scholar 

  • Efrati, H., Shinitzky, M., and Razin, S., 1980, Effects of charged cholesteryl esters on mycoplasma growth, FEBS Lett. 122:59–63.

    Article  PubMed  CAS  Google Scholar 

  • Efrati, H., Rottem, S., and Razin, S., 1981, Lipid and protein membrane components associated with cholesterol uptake by mycoplasmas, Biochim. Biophys. Acta 641:386–394.

    Article  PubMed  CAS  Google Scholar 

  • Efrati, H., Oschry, Y., Eisenberg, S., and Razin, S., 1982, Preferential uptake of lipids by mycoplasma membranes from human plasma low-density lipoproteins, Biochemistry 21:6477–6482.

    Article  PubMed  CAS  Google Scholar 

  • Efrati, H., Wax, Y., and Rottem, S., 1986, Cholesterol uptake capacity of Acholeplasma laidlawii is affected by the composition and content of membrane glycolipids, Arch. Biochem. Biophys. 248:282–288.

    Article  PubMed  CAS  Google Scholar 

  • Glasfeld, A., Leanz, G. F., and Benner, S. A., 1990, The stereospecificities of seven dehydrogenases from Acholeplasma laidlawii, J. Biol. Chem. 265:11692–11699.

    PubMed  CAS  Google Scholar 

  • Goldstein, J. L., and Brown, M. S., 1990, Regulation of the mevalonate pathway, Nature 343:425–430.

    Article  PubMed  CAS  Google Scholar 

  • Gross, Z., and Rottem, S., 1984, The preservation of Mycoplasma capricolum cell intactness after phospholipase A2 treatment, Biochim. Biophys. Acta 778:372–378.

    Article  CAS  Google Scholar 

  • Gross, Z., Rottem, S., and Bittman, R., 1982, Phospholipid interconversions in Mycoplasma capricolum, Eur. J. Biochem. 122:169–174.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz, A. F., Wright, A., Ludwig, P., and Cornell, R., 1978, Interrelated lipid alterations and their influence on the proliferation and fusion of cultured myogenic cells, J. Cell Biol. 77:334–357.

    Article  PubMed  CAS  Google Scholar 

  • Hyslop, P. A., Morel, B., and Sauerheber, R. D., 1990, Organization and interaction of cholesterol and phosphatidylcholine in model bilayer membranes, Biochemistry 29:1025–1038.

    Article  PubMed  CAS  Google Scholar 

  • Ipsen, J. H., Mouritsen, O. G., and Bloom, M., 1990, Relationships between lipid membrane area, hydrophobic thickness, and acyl-chain orientational order. The effects of cholesterol, Biophys. J. 57:405–412.

    Article  PubMed  CAS  Google Scholar 

  • James, G., and Olson, E. N., 1990, Fatty acylated proteins as components of intracellular signalling pathways, Biochemistry 29:2623–2633.

    Article  PubMed  CAS  Google Scholar 

  • Jones, O. T., and McNamee, M. G., 1988, Annular and nonannular binding sites for cholesterol associated with the nicotinic acetylcholine receptor, Biochemistry 27:2364–2374.

    Article  PubMed  CAS  Google Scholar 

  • Kahane, I., and Razin, S., 1977, Cholesterol-phosphatidylcholine dispersions as donors of cholesterol to mycoplasma membranes, Biochim. Biophys. Acta 471:32–38.

    Article  PubMed  CAS  Google Scholar 

  • Kannenberg, E., and Poralla, K., 1982, The influence of hopanoids on growth of Mycoplasma mycoides, Arch. Microbiol. 133:100–102.

    Article  PubMed  CAS  Google Scholar 

  • Kannenberg, E., Blume, A., McElhaney, R. N., and Poralla, K., 1983, Monolayer and calorimetric studies of phosphatidylcholines containing branched-chain fatty acids and of their interactions with cholesterol and with a bacterial hopanoid in model membranes, Biochim. Biophys. Acta 733:111–116.

    Article  CAS  Google Scholar 

  • Lange, Y., Dolde, J., and Steck, T., 1981, The rate of transmembrane movement of cholesterol in the human erythrocyte, J. Biol. Chem. 256:5321–5323.

    PubMed  CAS  Google Scholar 

  • Langworthy, T. A., 1979, Special features of thermoplasmas, in: The Mycoplasmas I: Cell Biology (M. F. Barile and S. Razin, eds.), Academic Press, New York, pp. 495–513.

    Google Scholar 

  • Le Grimellec, C., and Leblanc, G., 1978, Effect of membrane cholesterol on potassium transport in Mycoplasma mycoides var. capri (PG3), Biochim. Biophys. Acta 514:152–163.

    Article  PubMed  Google Scholar 

  • Lelong, I., Luu, B., Mersel, M., and Rottem, S., 1988, Effect of 7β-hydroxycholesterol on growth and membrane composition of Mycoplasma capricolum, FEBS Lett. 232:354–358.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, R. N. A. H., George, R., and McElhaney, R. N., 1986, Structure-function investigations of the membrane sodium-magnesium-ATPase from Acholeplasma laidlawii B: Studies of reactive amino acid residues using group-specific reagents, Arch. Biochem. Biophys. 247:201–210.

    Article  PubMed  CAS  Google Scholar 

  • Liebel, W. J., Firestone, L. L., Legier, D. C., Braswell, L. M., and Miller, K. W., 1987, Two pools of cholesterol in acetylcholine receptor-rich membranes from Torpedo, Biochim. Biophys. Acta 897:249–260.

    Article  Google Scholar 

  • Linker, C., and Wilson, T. H., 1985, Characterization and solubilization of the membrane-bound ATPase from Mycoplasma gallisepticum, J. Bacteriol. 163:1258–1262.

    PubMed  CAS  Google Scholar 

  • Lowey, B., Marczynski, G. T., Dingwall, A., and Shapiro, L., 1990, Regulatory interactions between phospholipid synthesis and DNA replication in Caulobacter crescentus, J. Bacteriol. 172:5523–5530.

    Google Scholar 

  • McElhaney, R. N., 1982, Effect of membrane lipids on transport and enzymatic activities, Curr. Top. Membr. Transp. 17:317–380.

    Article  CAS  Google Scholar 

  • McElhaney, R. N., 1989, The influence of membrane lipid composition and physical properties on membrane structure and function in Acholeplasma laidlawii, CRC Crit. Rev. Microbiol. 17:1–32.

    Article  CAS  Google Scholar 

  • McIntosh, T. J., 1978, The effect of cholesterol on the structure of phosphatidylcholine bilayers, Biochim. Biophys. Acta 513:43–58.

    Article  PubMed  CAS  Google Scholar 

  • McLean, L. R., and Phillips, M. C., 1981, Mechanisms of cholesterol and phosphatidylcholine exchange or transfer between unilamellar vesicles, Biochemistry 20:2893–2900.

    Article  PubMed  CAS  Google Scholar 

  • McNamee, M. G., Ellena, J. F., and Dalziel, A. W., 1982, Lipid-protein interactions in membranes containing the acetylcholine receptor, Biophys. J. 37:103–104.

    Article  PubMed  CAS  Google Scholar 

  • Melchior, D. L., and Rottem, S., 1981, The organization of cholesterol esters in membranes of Mycoplasma capricolum, Eur. J. Biochem. 117:147–153.

    Article  PubMed  CAS  Google Scholar 

  • Michelangeli, F., East, J. M., and Lee, A. G., 1990, Structural effects on the interaction of sterols with the (Ca2+ + Mg2+)-ATPase, Biochim. Biophys. Acta 1025:99–108.

    Article  PubMed  CAS  Google Scholar 

  • Montesano, R., Perrelet, A., Vassalli, P., and Orci, L., 1979, Absence of filipin-sterol complexes from large coated pits on the surface of cultured cells, Proc. Natl. Acad. Sci. USA 76:6391–6395.

    Article  PubMed  CAS  Google Scholar 

  • Nes, W. R., 1974, Role of sterols in membranes, Lipids 9:596–612.

    Article  PubMed  CAS  Google Scholar 

  • Odriozola, J. M., Waitzkin, E., Smith, T. L., and Bloch, K., 1978, Sterol requirement of Mycoplasma capricolum, Proc. Natl. Acad. Sci. USA 75:4107–4109.

    Article  PubMed  CAS  Google Scholar 

  • Ourisson, G., Albrecht, P., and Rohmer, M., 1979, The hopanoids: Paleochemistry and biochemistry of a group of natural products, Pure Appl. Chem. 51:709–729.

    Article  CAS  Google Scholar 

  • Pinto, W. J., Lozano, R., Sekula, B. C., and Nes, W. R., 1983, Stereochemically distinct roles for sterol in Saccharomyces cerevisiae, Biochem. Biophys. Res. Commun. 112:47–54.

    Article  PubMed  CAS  Google Scholar 

  • Quesney-Huneeus, V., Galick, H. A., Siperstein, M. D., Erickson, S. K., Spencer, T. A., and Nelson, J. A., 1983, The dual role of mevalonate in the cell cycle, J. Biol. Chem. 258:378–385.

    PubMed  CAS  Google Scholar 

  • Ramgopal, M., and Bloch, K., 1983, Sterol synergism in yeast, Proc. Natl. Acad. Sci. USA 80:712–715.

    Article  PubMed  CAS  Google Scholar 

  • Ramgopal, M., Zundel, M., and Bloch, K., 1990, Sterol effects on phospholipid biosynthesis in the yeast strain GL7, J. Lipid Res. 31:653–658.

    PubMed  CAS  Google Scholar 

  • Razin, S., 1974, Correlation of cholesterol to phospholipid content in membranes of growing mycoplasmas, FEBS Lett. 47:81–85.

    Article  PubMed  CAS  Google Scholar 

  • Razin, S., 1982, Sterols in mycoplasma membranes, Curr. Top. Membr. Transp. 17:183–205.

    Article  CAS  Google Scholar 

  • Razin, S., and Argaman, M., 1963, Lysis of mycoplasma, bacterial protoplasts, spheroplasts, and L-forms by various agents, J. Gen. Microbiol. 30:155–172.

    Article  PubMed  CAS  Google Scholar 

  • Rilfors, L., Lindblom, G., Wieslander, A., and Christiansson, A., 1984, Lipid bilayer stability in biological membranes, in: Membrane Fluidity (M. Kates and L. A. Manson, eds.), Plenum Press, New York, pp. 205–245.

    Chapter  Google Scholar 

  • Rodriguez, R. J., Taylor, F. R., and Parks, L. W., 1982, A requirement for ergosterol to permit growth of yeast sterol auxotrophs on cholestanol, Biochem. Biophys. Res. Commun. 106:435–441.

    Article  PubMed  CAS  Google Scholar 

  • Rodwell, A. W., 1969, The supply of cholesterol and fatty acids for the growth of mycoplasmas, J. Gen. Microbiol. 58:29–37.

    Article  PubMed  CAS  Google Scholar 

  • Rodwell, A. W., 1983a, Mycoplasma gallisepticum requires exogenous phospholipid for growth, FEMS Microbiol. Lett. 17:265–268.

    Article  CAS  Google Scholar 

  • Rodwell, A. W., 1983b, Defined and partly defined media, in: Methods in Mycoplasmology, Volume 1 (S. Razin and J. G. Tully, eds.), Academic Press, New York, pp. 163–172.

    Google Scholar 

  • Romano, N., Shirvan, M. H., and Rottem, S., 1986, Changes in membrane lipid composition of Mycoplasma capricolum affect the cell volume, J. Bacteriol. 167:1089–1091.

    PubMed  CAS  Google Scholar 

  • Rottem, S., 1980, Membrane lipids of mycoplasmas, Biochim. Biophys. Acta 604:65–90.

    PubMed  CAS  Google Scholar 

  • Rottem, S., 1981, Cholesterol is required to prevent crystallization of Mycoplasma arginini phospho-lipids at physiological temperature, FEBS Lett. 133:161–164.

    Article  PubMed  CAS  Google Scholar 

  • Rottem, S., and Markowitz, O., 1979, Carotenoids act as reinforcers of the Acholeplasma laidlawii lipid bilayer, J. Bacteriol. 140:944–948.

    PubMed  CAS  Google Scholar 

  • Rottem, S., and Verkleij, A. J., 1982, Possible association of segregated lipid domains of Mycoplasma gallisepticum membranes with cell resistance to osmotic lysis, J. Bacteriol. 149:338–345.

    PubMed  CAS  Google Scholar 

  • Rottem, S., Yashouv, J., Ne’eman, Z., and Razin, S., 1973a, Cholesterol in mycoplasma membranes. Composition, ultrastructure, and biological properties of membranes from Mycoplasma mycoides var. capri cells adapted to grow with low cholesterol concentrations, Biochim. Biophys. Acta 323:495–508.

    Article  PubMed  CAS  Google Scholar 

  • Rottem, S., Cirillo, V. P., de Kruyff, B., Shinitzky, M., and Razin, S., 1973b, Cholesterol in mycoplasma membranes. Correlation of enzymic and transport activities with physical state of lipids in membranes of Mycoplasma mycoides var. capri adapted to grow with low cholesterol concentrations, Biochim. Biophys. Acta 323:509–519.

    Article  PubMed  CAS  Google Scholar 

  • Rottem, S., Slutzky, G. M., and Bittman, R., 1978, Cholesterol distribution and movement in the Mycoplasma gallisepticum cell membrane, Biochemistry 17:2723–2726.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder, F., 1981, Use of a fluorescent sterol to probe the transbilayer distribution of sterols in biological membranes, FEBS Lett. 135:127–130.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, D., and Boss, K., 1982, Band 3 protein-cholesterol interactions in erythrocyte membranes, FEBS Lett. 150:4–8.

    Article  PubMed  CAS  Google Scholar 

  • Shirvan, M. H., Schuldiner, S., and Rottem, S., 1989, Volume regulation in Mycoplasma gallisepticum: Evidence that Na+ is extruded via a primary Na+ pump, J. Bacteriol. 171:4417–4424.

    PubMed  CAS  Google Scholar 

  • Silvius, J. R., Read, B. D., and McElhaney, R. N., 1978, Membrane enzymes: Artifacts in Arrhenius plots due to temperature dependence of substrate-binding affinity, Science 199:902–904.

    Article  PubMed  CAS  Google Scholar 

  • Simmonds, A. C., East, J. M., Jones, O. T., Rooney, E. K., McWhirter, J., and Lee, A. G., 1982, Annular and non-annular binding sites on the (Ca2+ + Mg2+)-ATPase, Biochim. Biophys. Acta 693:398–406.

    Article  PubMed  CAS  Google Scholar 

  • Slutzky, G. M., Razin, S., Kahane, I., and Eisenberg, S., 1977, Cholesterol transfer from serum lipoproteins to mycoplasma. Biochemistry 16:5158–5163.

    Article  PubMed  CAS  Google Scholar 

  • Smith, P. F., 1964, Comparative physiology of pleuropneumonia-like and L-type organisms, Bacteriol. Rev. 28:97–125.

    PubMed  CAS  Google Scholar 

  • Smith, P. F., 1979, The composition of membrane lipids and lipopolysaccharides, in: The Mycoplasmas I: Cell Biology (M. F. Barile and S. Razin, eds.), Academic Press, New York, pp. 231–257.

    Google Scholar 

  • Smith, P. F., and Lynn, R. J., 1958, Lipid requirements for the growth of pleuropneumonialike organisms, J. Bacteriol. 76:264–269.

    PubMed  CAS  Google Scholar 

  • Smith, P. F., and Rothblat, G. H., 1962, Comparison of lipid composition of pleuropneumonia-like and L-type organisms, J. Bacteriol. 83:500–506.

    PubMed  CAS  Google Scholar 

  • Stremmel, W., Strohmeyer, G., Borchard, F., Kochwa, S., and Berk, P., 1985, Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membrane, Proc. Natl. Acad. Sci. USA 82:4–8.

    Article  PubMed  CAS  Google Scholar 

  • Waitzkin, E. D., and Abraham, E. H., 1981, Effect of sterol structure on intracellular sodium and potassium in Mycoplasma capricolum, Proc. 16th Ann. Conf. Microbeam Anal. Soc., pp. 226–228.

    Google Scholar 

  • White, J., Kielan, M., and Helenius, A., 1983, Membrane fusion proteins of enveloped animal viruses, Q. Rev. Biophys. 16:151–195.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, T. H., 1954, Ionic permeability and osmotic swelling, Science 120:104–105.

    Article  PubMed  CAS  Google Scholar 

  • Yeagle, P. L., 1985, Cholesterol and the cell membrane, Biochim. Biophys. Acta 822:267–287.

    Article  PubMed  CAS  Google Scholar 

  • Yeagle, P. L., 1988, Cholesterol and the cell membrane, in: Biology of Cholesterol (P. L. Yeagle, ed.), CRC Press, Boca Raton, Fla., pp. 121–145.

    Google Scholar 

  • Yeagle, P., Martin, R. B., Lala, A. K., Lin, H. K., and Bloch, K., 1977, Differential effects of cholesterol and lanosterol on artificial membranes, Proc. Nati. Acad. Sei. USA 74:4924–4926.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dahl, J. (1993). The Role of Cholesterol in Mycoplasma Membranes. In: Rottem, S., Kahane, I. (eds) Mycoplasma Cell Membranes. Subcellular Biochemistry, vol 20. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2924-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2924-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6269-2

  • Online ISBN: 978-1-4615-2924-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics