Skip to main content

Components and Mechanisms Involved in Transport of Proteins into the Endoplasmic Reticulum

  • Chapter
Endoplasmic Reticulum

Part of the book series: Subcellular Biochemistry ((SCBI,volume 21))

Abstract

Every polypeptide has a unique intra- or extracellular location where it fulfills its function. In all eukaryotes, proteins are synthesized in a single compartment, i.e., the cytosol (excluding protein synthesis in mitochondria and chloroplasts). Noncytosolic proteins, therefore, have to be directed to different subcellular locations. In these cases, the sites of synthesis and functional location are separated by at least one biological membrane. Thus, mechanisms that ensure the specific transport of proteins across membranes must exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelman, M. R., Sabatini, D. D., and Blobel, G., 1973, Ribosome-membrane interaction. Nondestructive disassembly of rat liver rough microsomes into ribosomes and membranous components, J. Cell Biol. 56:206–229.

    Article  PubMed  CAS  Google Scholar 

  • Ainger, K. J., and Meyer, D. I., 1986, Translocation of nascent secretory proteins across membranes can occur late in translation, EMBO J. 5:951–955.

    PubMed  CAS  Google Scholar 

  • Amaya, Y., Nakano, A., Ito, K., and Mori, M., 1990, Isolation of a yeast gene, SRH1, that encodes a homologue of the 54k subunit of mammalian signal recognition particle, J. Biochem. 107:457–463.

    PubMed  CAS  Google Scholar 

  • Austen, B. M., Hermon-Taylor, J., Kaderbhai, M. A., and Ridd, D. H., 1984, Design and synthesis of a consensus signal sequence that inhibits protein translocation into rough microsomal vesicles, Biochem. J. 224:317–325.

    PubMed  CAS  Google Scholar 

  • Baker, R. K., and Lively, M. O., 1987, Purification and characterization of hen oviduct microsomal signal peptidase, Biochemistry 26:8561–8567.

    Article  PubMed  CAS  Google Scholar 

  • Bernabeu, C., and Lake, J. A., 1982, Nascent Polypeptide chains emerge from the exit domain of the large ribosomal subunit: Immune mapping of the nascent chain, Proc. Natl. Acad. Sci. USA 79:3111–3115.

    Article  PubMed  CAS  Google Scholar 

  • Blobel, G., and Sabatini, D. D., 1970, Controlled proteolysis of nascent Polypeptides in rat liver cell fractions, J. Cell Biol. 45:130–145.

    Article  PubMed  CAS  Google Scholar 

  • Blumberg, H., and Silver, P. A., 1991, A homologue of the bacterial heat shock gene DnaJ that alters protein sorting in yeast, Nature 349:627–629.

    Article  PubMed  CAS  Google Scholar 

  • Böhni, P. C., Deshaies, R. J., and Schekman, R. W., 1988, Secll is required for signal peptide processing and yeast cell growth, J. Cell Biol. 106:1035–1042.

    Article  PubMed  Google Scholar 

  • Borgese, N., Mok, W., Kreibich, G., and Sabatini, D. D., 1974, Ribosome—membrane interaction: In vitro binding of ribosomes to microsomal membranes, J. Mol. Biol. 88:559–580.

    Article  PubMed  CAS  Google Scholar 

  • Buchner, J., Schmidt, M., Fuchs, M., Jaenicke, R., Rudolph, R., Schmid, F. X., and Kiefhaber, T., 1991, GroE facilitates refolding of citrate synthase by suppressing aggregation, Biochemistry 30:1586–1591.

    Article  PubMed  CAS  Google Scholar 

  • Caplan, A. J., and Douglas, M. G., 1991, Characterization of YDJ1: A yeast homologue of the bacterial dnaJ protein, J. Cell Biol. 114:609–621.

    Article  PubMed  CAS  Google Scholar 

  • Chirico, W. J., Waters, G. M., and Blobel, G., 1988, 70K heat shock related proteins stimulate protein translocation into microsomes, Nature 332:805–810.

    Article  PubMed  CAS  Google Scholar 

  • Clairmont, C. A., De Maio, A., and Hirschberg, C. B., 1992, Translocation of ATP into the lumen of rough endoplasmic reticulum-derived vesicles and its binding to luminal proteins including BiP (GRP 78) and GRP 94, J. Biol. Chem. 267:3983–3990.

    PubMed  CAS  Google Scholar 

  • Collins, P. G., and Gilmore, R., 1991, Ribosome binding to the endoplasmic reticulum: A 180-kD protein identified by crosslinking to membrane-bound ribosomes is not required for ribosome binding activity, J. Cell Biol. 114:639–649.

    Article  PubMed  CAS  Google Scholar 

  • Connolly, T., and Gilmore, R., 1986, Formation of a functional ribosome—membrane junction during translocation requires the participation of a GTP-binding protein, J. Cell Biol. 103:2253–2261.

    Article  PubMed  CAS  Google Scholar 

  • Connolly, T., and Gilmore, R., 1989, The signal recognition particle receptor mediates the GTP-dependent displacement of SRP from the signal sequence of the nascent Polypeptide, Cell 57:599–610.

    Article  PubMed  CAS  Google Scholar 

  • Connolly, T., Rapiejko, P. J., and Gilmore, R., 1991, Requirement of GTP hydrolysis for dissociation of the signal recognition particle from its receptor, Science 252:1171–1173.

    Article  CAS  Google Scholar 

  • Crimaudo, C., Hortsch, M., Gausepohl, H., and Meyer, D. I., 1987, Human ribophorins I and II: The primary structure and membrane topology of two highly conserved rough endoplasmic reticulum-specific glycoproteins, EMBO J. 6:75–82.

    PubMed  CAS  Google Scholar 

  • Deshaies, R. J., and Schekman, R., 1987, A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum, J. Cell Biol. 105:633–645.

    Article  PubMed  CAS  Google Scholar 

  • Deshaies, R. J., and Schekman, R., 1989, Sec62 encodes a putative membrane protein required for protein translocation into the yeast endoplasmic reticulum, J. Cell Biol. 109:2653–2664.

    Article  PubMed  CAS  Google Scholar 

  • Deshaies, R. J., Koch, B. D., Werner-Washburne, M., Craig, E. A., and Schekman, R., 1988, A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor Polypeptides, Nature 332:800–805.

    Article  PubMed  CAS  Google Scholar 

  • Deshaies, R. J., Sanders, S. L., Feldheim, D. A., and Schekman, R., 1991, Assembly of yeast Sec proteins involved in translocation into the endoplasmic reticulum into a membrane-bound multisubunit complex, Nature 349:806–808.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, P. D., and Walter, P., 1988, Full-length prepro-α-factor can be translocated across the mammalian microsomal membrane only if translation has not terminated, J. Cell Biol. 106:1043–1048.

    Article  PubMed  CAS  Google Scholar 

  • Geller, B. L., and Wickner, W., 1985, M13 procoat protein inserts into liposomes in the absence of other membrane proteins, J. Biol. Chem. 260:13281–13285.

    PubMed  CAS  Google Scholar 

  • Görlich, D., Prehn, S., Hartmann, E., Herz, J., Otto, A., Kraft, R., Wiedmann, M., Knespel, S., Dobberstein, B., and Rapoport, T., 1990, The signal sequence receptor has a second subunit and is part of a translocation complex in the endoplasmic reticulum as probed by bifunctional reagents, J. Cell Biol. 111:2283–2294.

    Article  PubMed  Google Scholar 

  • Görlich, D., Hartmann, E., Prehn, S., and Rapoport, T. A., 1992, A protein of the endoplasmic reticulum involved early in Polypeptide translocation, Nature 357:47–52.

    Article  PubMed  Google Scholar 

  • Green, N., Fang, H., and Walter, P., 1992, Mutants in three novel complementation groups inhibit membrane protein insertion into and soluble protein translocation across the endoplasmic reticulum membrane of Saccharomyces cerevisiae, J. Cell Biol. 116:597–604.

    Article  PubMed  CAS  Google Scholar 

  • Greenburg, G., Shelness, G. S., and Blobel, G., 1989, A subunit of mammalian signal peptidase is homologous to yeast secll protein, J. Biol. Chem. 264:15762–15765.

    PubMed  CAS  Google Scholar 

  • Hann, B. C., and Walter, P., 1991, The signal recognition particle in S. Cerevisiae, Cell 67:131–144.

    Article  PubMed  CAS  Google Scholar 

  • Hann, B. C., Poritz, M. A., and Walter, P., 1989, Saccharomyces cerevisiae and Schizosaccharomyces pombe contain a homologue to the 54-kD subunit of the signal recognition particle that in S. cerevisiae is essential for growth, J. Cell Biol. 109:3223–3235.

    Article  PubMed  CAS  Google Scholar 

  • Hann, B. C., Stirling, C. J., and Walter, P., 1992, Sec65 gene product is a subunit of the yeast signal recognition particle required for its integrity, Nature 356:532–533.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, W., Garcia, P. D., and Walter, P., 1986, In vitro protein translocation across the yeast endoplasmic reticulum: ATP dependent post-translational translocation of the prepro-α-factor, Cell 45:397–406.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann, E., Wiedmann, M., and Rapoport, T. A., 1989, A membrane component of the endoplasmic reticulum that may be essential for protein translocation, EMBO J. 8:2225–2229.

    PubMed  CAS  Google Scholar 

  • High, S., Görlich, D., Wiedmann, M., Rapoport, T. A., and Dobberstein, B., 1991, The identification of proteins in the proximity of signal anchor sequences during their targeting to and insertion into the membrane of the ER, J. Cell Biol. 113:35–44.

    Article  PubMed  CAS  Google Scholar 

  • Hortsch, M., Avossa, D., and Meyer, D. I., 1986, Characterization of secretory protein translocation: Ribosome-membrane interaction in endoplasmic reticulum, J. Cell Biol. 103:241–253.

    Article  PubMed  CAS  Google Scholar 

  • Kellaris, K. V., Bowen, S., and Gilmore, R., 1991, ER translocation intermediates are adjacent to a nonglycosylated 34-kD integral membrane protein, J. Cell Biol. 114:21–33.

    Article  PubMed  CAS  Google Scholar 

  • Kelleher, D. J., Kreibich, G., and Gilmore, R., 1992, Oligosaccharyltransferase activity is associated with a protein complex composed of ribophorins I and II and a 48 kd protein, Cell 69:55–65.

    Article  PubMed  CAS  Google Scholar 

  • Klappa, P., Mayinger, P., Pipkorn, R., Zimmermann, M., and Zimmermann, R., 1991, A microsomal protein is involved in ATP-dependent transport of presecretory proteins into mammalian microsomes, EMBO J. 10:2795–2803.

    PubMed  CAS  Google Scholar 

  • Koppelman, B., Zimmerman, D. L., Walter, P., and Brodsky, F. M., 1992, Evidence for peptide transport across microsomal membranes, Proc. Natl. Acad. Sci. USA 89:3908–3912.

    Article  PubMed  CAS  Google Scholar 

  • Krieg, U. C., Walter, P., and Johnson, A. E., 1986, Photocrosslinking of the signal sequence of nascent preprolactin to the 54-kilodalton Polypeptide of the signal recognition particle, Proc. Natl. Acad. Sci. USA 83:8604–8608.

    Article  PubMed  CAS  Google Scholar 

  • Krieg, U. C., Johnson, A. E., and Walter, P., 1989, Protein translocation across the endoplasmic reticulum membrane: Identification by photocross-linking of a 39-kD integral membrane glycoprotein as part of a putative translocation tunnel, J. Cell Biol. 109:2033–2043.

    Article  PubMed  CAS  Google Scholar 

  • Kuchler, K., Sterne, R. E., and Thorner, J., 1989, Saccharomyces cerevisiae STE6 gene product: A novel pathway for protein export in eukaryotic cells, EMBO J. 8:3973–3984.

    PubMed  CAS  Google Scholar 

  • Kurzchalia, T. V., Wiedmann, M., Girshovich, A. S., Bochkareva, E. S., Bielka, H., and Rapoport, T. A., 1986, The signal sequence of nascent preprolactin interacts with the 54K Polypeptide of the signal recognition particle, Nature 320:634–636.

    Article  PubMed  CAS  Google Scholar 

  • Lauffer, L., Garcia, P. D., Harkins, R. N., Coussens, L., Ullrich, A., and Walter, P., 1985, Topology of signal recognition particle receptor in the endoplasmic reticulum membrane, Nature 318:334–338.

    Article  PubMed  CAS  Google Scholar 

  • Levy, F., Gabathuler, R., Larsson, R., and Kvist, S., 1991, ATP is required for in vitro assembly of MHC class I antigens but not for transfer of peptides across the ER membrane, Cell 67:265–274.

    Article  PubMed  CAS  Google Scholar 

  • Luke, M. M., Sutton, A., and Arndt, K. T., 1991, Characterization of SIS1, a Saccharomyces cerevisiae homologue of bacterial dnaJ proteins, J. Cell Biol. 114:623–638.

    Article  PubMed  CAS  Google Scholar 

  • Liitcke, H., High, S., Römisch, K., Ashford, A. J., and Dobberstein, B., 1992, The methionine-rich domain of the 54 kDa subunit of signal recognition particle is sufficient for the interaction with signal sequences, EMBO J. 11:1543–1551.

    Google Scholar 

  • McGrath, J. P., and Varshavsky, A., 1989, The yeast STE6 gene encodes a homologue of the mammalian multidrug resistance P-glycoprotein, Nature 340:400–404.

    Article  PubMed  CAS  Google Scholar 

  • Malkin, L. I., and Rich, A., 1967, Partial resistance of nascent Polypeptide chains to proteolytic digestion due to ribosomal shielding, J. Mol. Biol. 26:329–346.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, D. I., and Dobberstein, B., 1980a, A membrane component essential for vectorial translocation of nascent proteins across the endoplasmic reticulum: Requirements for its extraction and reassociation with the membrane, J. Cell Biol. 87:498–502.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, D.I., and Dobberstein, B., 1980b, Identification and characterization of a membrane component essential for the translocation of nascent proteins across the membrane of the endoplasmic reticulum, J. Cell Biol. 87:503–508.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, D. I., Krause, E., and Dobberstein, B., 1982, Secretory protein translocation across membranes—The role of the ‘docking protein,’ Nature 297:647–650.

    Article  PubMed  CAS  Google Scholar 

  • Migliaccio, G., Nicchitta, C. V., and Blobel, G., 1992, The signal sequence receptor, unlike the signal recognition particle receptor, is not essential for protein translocation, J. Cell Biol. 117:15–25.

    Article  PubMed  CAS  Google Scholar 

  • Müller, G., and Zimmermann, R., 1987, Import of honeybee prepromelittin into the endoplasmic reticulum: Structural basis for independence of SRP and docking protein, EMBO J. 6:2099–2107.

    PubMed  Google Scholar 

  • Müller, G., and Zimmermann, R., 1988, Import of honeybee prepromelittin into the endoplasmic reticulum: Energy requirements for membrane insertion, EMBO J. 7:639–648.

    PubMed  Google Scholar 

  • Müsch, A., Wiedmann, M., and Rapoport, T. A., 1992, Yeast Sec proteins interact with Polypeptides traversing the endoplasmic reticulum membrane, Cell 69:343–352.

    Article  PubMed  Google Scholar 

  • Nguyen, T. H., Law, D. T. S., and Williams, D. B., 1991, Binding protein BiP is required for translocation of secretory proteins into the endoplasmic reticulum in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 88:1565–1569.

    Article  PubMed  CAS  Google Scholar 

  • Nicchitta, C. V., and Blobel, G., 1989, Nascent secretory binding and translocation are distinct processes: Differentiation by chemical alkylation, J. Cell Biol. 108:789–795.

    Article  PubMed  CAS  Google Scholar 

  • Nicchitta, C. V., and Blobel, G., 1990, Assembly of translocation competent proteoliposomes from detergent-solubilized rough microsomes, Cell 60:259–266.

    Article  PubMed  CAS  Google Scholar 

  • Nicchitta, C. V., Migliaccio, G., and Blobel, G., 1991, Biochemical fractionation and assembly of the membrane components that mediate nascent chain targeting and translocation, Cell 65:587–598.

    Article  PubMed  CAS  Google Scholar 

  • Nunnari, J. M., Zimmerman, D. L., and Walter, P., 1991, Characterization of the rough endoplasmic reticulum ribosome-binding activity, Nature 352:638–640.

    Article  PubMed  CAS  Google Scholar 

  • Parham, P., 1991, Half of a peptide pump, Nature 351:271–272.

    Article  PubMed  CAS  Google Scholar 

  • Parham, P., 1992, Flying the first class flag, Nature 357:193–194.

    Article  PubMed  CAS  Google Scholar 

  • Perara, E., Rothman, R. E., and Lingappa, V. R., 1986, Uncoupling translocation from translation: Implications for transport of proteins across membranes, Science 232:348–352.

    Article  PubMed  CAS  Google Scholar 

  • Perlman, D., and Halvorson, H. O., 1983, A putative signal peptidase recognition site and sequence in eucaryotic and procaryotic signal peptides, J. Mol. Biol. 167:391–409.

    Article  PubMed  CAS  Google Scholar 

  • Poritz, M. A., Siegel, V., Hansen, W., and Walter, P., 1988, Small ribonucleoproteins in Schizosaccharomyces pombe and Yarrowia lipolytica homologous to signal recognition particle, Proc. Natl. Acad. Sci. USA 85:4315–4319.

    Article  PubMed  CAS  Google Scholar 

  • Prehn, S., Herz, J., Hartmann, E., Kurzchalia, T. V., Frank, R., Roemisch, K., Dobberstein, B., and Rapoport, T. A., 1990, Structure and biosynthesis of the signal sequence receptor, Eur. J. Biochem. 188:439–445.

    Article  PubMed  CAS  Google Scholar 

  • Rapiejko, P. J., and Gilmore, R., 1992, Protein translocation across the ER requires a functional GTP binding site in the α subunit of the signal recognition particle receptor, J. Cell Biol. 117:493–503.

    Article  PubMed  CAS  Google Scholar 

  • Ribes, V., Dehaux, P., and Tollervey, D., 1988, 7SL RNA from Schizosaccharomyces pombe is encoded by a single copy essential gene, EMBO J. 7:231–237.

    PubMed  CAS  Google Scholar 

  • Robinson, A., Kaderbhai, M. A., and Austen, B. A., 1987, Identification of signal sequence binding proteins integrated into the rough endoplasmic reticulum membrane, Biochem. J. 242:767–777.

    PubMed  CAS  Google Scholar 

  • Römisch, K., Webb, J., Lingelbach, K., Gausepohl, H., and Dobberstein, B., 1990, The 54-kD protein of signal recognition particle contains a methionine-rich RNA binding domain, J. Cell Biol. 111:1793–1802.

    Article  PubMed  Google Scholar 

  • Rothblatt, J. A., and Meyer, D. I., 1986, Secretion in yeast: Translocation and glycosylation of prepro-α-factor in vitro can occur via an ATP-dependent post-translational mechanism, EMBO J. 5:1031–1036.

    PubMed  CAS  Google Scholar 

  • Rubartelli, A., Cozzolino, F., Talio, M., and Sitia, R., 1990, A novel secretory pathway for interleukin-l β, a protein lacking a signal sequence, EMBO J. 9:1503–1510.

    PubMed  CAS  Google Scholar 

  • Sadler, I., Chiang, A., Kurihara, T, Rothblatt, J., Way, J., and Silver, P., 1989, A yeast gene important for protein assembly into the endoplasmic reticulum and the nucleus has homology to DnaJ, an Escherichia coli heat shock protein, J. Cell Biol. 109:2665–2675.

    Article  PubMed  CAS  Google Scholar 

  • Sanders, S. L., Whitfield, K. M., Vogel, J. P., Rose, M. D., and Schekman, R., 1992, Sec61p and BiP directly facilitate Polypeptide translocation into the ER, Cell 69:353–365.

    Article  PubMed  CAS  Google Scholar 

  • Sanz, P., and Meyer, D. I., 1989, Secretion in yeast: Preprotein binding to a membrane receptor and ATP-dependent translocation are sequential and separable events in vitro, J. Cell Biol. 108:2101–2106.

    Article  PubMed  CAS  Google Scholar 

  • Savitz, A. J., and Meyer, D. I., 1990, Identification of a ribosome receptor in the rough endoplasmic reticulum, Nature 346:540–544.

    Article  PubMed  CAS  Google Scholar 

  • Schlenstedt, G., and Zimmermann, R., 1987, Import of frog prepropeptide GLa into microsomes requires ATP but does not involve docking protein or ribosomes, EMBO J. 6:699–703.

    PubMed  CAS  Google Scholar 

  • Schlenstedt, G., Gudmundsson, G. H., Boman, H. G., and Zimmermann, R., 1990, A large presecretory protein translocates both cotranslationally, using signal recognition particle and ribosome, and posttranslationally, without these ribonucleoparticles, when synthesized in the presence of mammalian microsomes, J. Biol. Chem. 265:13960–13968.

    PubMed  CAS  Google Scholar 

  • Shelness, G., and Blobel, G., 1990, Two subunits of the canine signal peptidase complex are homologous to yeast sec 11 protein, J. Biol. Chem. 265:9512–9519.

    PubMed  CAS  Google Scholar 

  • Shelness, G. S., Kanwar, Y. S., and Blobel, G., 1988, cDNA-derived primary structure of the glycoprotein component of canine microsomal signal peptidase complex, J. Biol. Chem. 263:17063–17070.

    PubMed  CAS  Google Scholar 

  • Simon, S. M., and Blobel, G., 1991, A protein-conducting channel in the endoplasmic reticulum, Cell 65:371–380.

    Article  PubMed  CAS  Google Scholar 

  • Spies, T., and DeMars, R., 1991, Restored expression of major histocompatibility class I molecules by gene transfer of a putative peptide transporter, Nature 351:323–324.

    Article  PubMed  CAS  Google Scholar 

  • Stirling, C. J., and Hewitt, E. W., 1992, The S. cerevisiae Sec65 gene encodes a component of yeast signal recognition particle with homology to human SRP19, Nature 356:534–537.

    Article  PubMed  CAS  Google Scholar 

  • Tajima, S., Lauffer, L., Rath, V. L., and Walter, P., 1986, The signal recognition particle receptor is a complex that contains two distinct Polypeptide chains, J. Cell Biol. 103:1167–1178.

    Article  PubMed  CAS  Google Scholar 

  • Tazawa, S., Unuma, M., Tondokoro, J., Asano, Y., Ohsumi, T., Ichimura, T, and Sugano, H., 1991, Identification of a membrane protein responsible for ribosome binding in rough microsomal membranes, J. Biochem. 109:89–98.

    PubMed  CAS  Google Scholar 

  • te Heesen, S., Rauhut, R., Aebersold, R., Abelson, J., Aebi, M., and Clark, M. W., 1991, An essential 45 kDa yeast transmembrane protein reacts with anti-nuclear pore antibodies: Purification of the protein, immunolocalization and cloning of the gene, Eur. J. Cell Biol. 56:8–18.

    Google Scholar 

  • te Heesen, S., Janetzky, B., Lehle, L., and Aebi, M., 1992, The yeast WBP1 is essential for oligosaccharyl transferase activity in vivo and in vitro, EMBO J. 11:2071–2075.

    Google Scholar 

  • Thrift, R. N., Andrews, D.W., Walter, P., and Johnson, A. E., 1991, A nascent membrane protein is located adjacent to ER membrane proteins throughout its integration and translation, J. Cell Biol. 112:809–821.

    Article  PubMed  CAS  Google Scholar 

  • Toyn, J., Hibbs, A. R., Sanz, P., Crowe, J., and Meyer, D. I., 1988, In vivo and in vitro analysis of pt11, a yeast ts mutant with a membrane associated defect in protein translocation, EMBO J. 7:4347–4353.

    PubMed  CAS  Google Scholar 

  • Vogel, J. P., Misra, L. M., and Rose, M. D., 1990, Loss of BiP/GRP78 function blocks translocation of secretory proteins in yeast, J. Cell Biol. 110:1885–1895.

    Article  PubMed  CAS  Google Scholar 

  • von Heijne, G., 1981, On the hydrophobic nature of signal sequences, Eur. J. Biochem. 116:419–422.

    Article  Google Scholar 

  • von Heijne, G., 1983, Patterns of amino acids near signal sequence cleavage sites, Eur. J. Biochem. 113:17–21.

    Article  Google Scholar 

  • von Heijne, G., 1984, Analysis of the distribution of charged residues in the N-terminal region of signal sequences: Implications for protein export in prokaryotic and eukaryotic cells, EMBO J. 3:2315–2318.

    Google Scholar 

  • von Heijne, G., 1985, Signal sequences: The limits of variation, J. Mol. Biol. 184:99–105.

    Article  Google Scholar 

  • Walter, P., and Blobel, G., 1981a, Translocation of proteins across the endoplasmic reticulum. II. Signal recognition protein, SRP, mediates the selective binding to microsomal membranes of in-vitro-assembled polysomes synthesizing secretory protein, J. Cell Biol. 91:551–556.

    Article  PubMed  CAS  Google Scholar 

  • Walter, P., and Blobel, G., 1981b, Translocation of proteins across the endoplasmic reticulum. III. Signal recognition protein, SRP, causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes, J. Cell Biol. 91:557–561.

    Article  PubMed  CAS  Google Scholar 

  • Walter, P., and Blobel, G., 1982, Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum, Nature 299:691–698.

    Article  PubMed  CAS  Google Scholar 

  • Walter, P., Ibrahimi, I., and Blobel, G., 1981, Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein, SRP, binds to in-vitro-assembled polysomes synthesizing secretory protein, J. Cell Biol. 91:545–550.

    Article  PubMed  CAS  Google Scholar 

  • Waters, M. G., and Blobel, G., 1986, Secretory protein translocation in a yeast cell-free system can occur posttranslationally and requires ATP hydrolysis, J. Cell Biol. 102:1543–1550.

    Article  PubMed  CAS  Google Scholar 

  • Waters, M. G., Chirico, W. J., and Blobel, G., 1986, Protein translocation across the yeast microsomal membrane is stimulated by a soluble factor, J. Cell Biol. 103:2629–2636.

    Article  PubMed  CAS  Google Scholar 

  • Watts, C., Wickner, W., and Zimmermann, R., 1983, M13 procoat and a pre-immunoglobulin share processing specificity but use different membrane receptor systems, Proc. Natl. Acad. Sci. USA 80:2809–2813.

    Article  PubMed  CAS  Google Scholar 

  • Wiech, H., Sagstetter, M., Müller, G., and Zimmermann, R., 1987, The ATP requiring step in assembly of M13 procoat protein into microsomes is related to preservation of transport competence of the precursor protein, EMBO J. 6:1011–1016.

    PubMed  CAS  Google Scholar 

  • Wiech, H., Stuart, R., and Zimmermann, R., 1990, Role of cytosolic factors in the transport of proteins across membranes, Semin. Cell Biol. 1:55–63.

    PubMed  CAS  Google Scholar 

  • Wiech, H., Klappa, P., and Zimmermann, R., 1991, Protein export in prokaryotes and eukaryotes, FEBS Lett. 285:182–188.

    Article  PubMed  CAS  Google Scholar 

  • Wiech, H., Buchner, J., Zimmermann, R., and Jakob, U., 1992, Hsp90 chaperones protein folding in vitro, Nature 358:169–170.

    Article  PubMed  CAS  Google Scholar 

  • Wiech, H., Büchner, J., Zimmermann, M., Zimmermann, R., and Jacob, U. 1993, Hsc70, Immunoglobulin heavy chain binding protein, and Hsp90 differ in their ability to stimulate transport of precursor proteins into mammalian microsomes, J. Biol. Chem. 268:7414–7421.

    PubMed  CAS  Google Scholar 

  • Wiedmann, M., Kurzchalia, T. V., Bielka, H., and Rapoport, T. A., 1987a, Direct probing of the interaction between the signal sequence of nascent preprolactin and the signal recognition particle by specific crosslinking, J. Cell Biol. 104:201–208.

    Article  PubMed  CAS  Google Scholar 

  • Wiedmann, M., Kurzchalia, T. V., Hartmann, E., and Rapoport, T. A., 1987b, A signal sequence receptor in the endoplasmic reticulum membrane, Nature 328:830–833.

    Article  PubMed  CAS  Google Scholar 

  • Wolin, S. L., and Walter, P., 1988, Ribosome pausing and stacking during translation of a eukaryotic mRNA, EMBO J. 7:3559–3569.

    PubMed  CAS  Google Scholar 

  • Wolin, S. L., and Walter, P., 1989, Signal recognition particle mediates a transient elongation arrest of preprolactin in reticulocyte lysate, J. Cell Biol. 109:2617–2622.

    Article  PubMed  CAS  Google Scholar 

  • YaDeau, J. T., and Blobel, G., 1989, Solubilization and characterization of yeast signal peptidase, J. Biol. Chem. 264:2928–2934.

    PubMed  CAS  Google Scholar 

  • YaDeau, J. T., Klein, C., and Blobel, G., 1991, Yeast signal peptidase contains a glycoprotein and the Sec11 gene product, Proc. Natl. Acad. Sci. USA 88:517–521.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Y., Zhang, Y., Sabatini, D. D., and Kreibich, G., 1989, Reconstitution of translocationcompetent vesicles from detergent-solubilized dog pancreas microsomes, Proc. Natl. Acad. Sci. USA 86:9931–9935.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman, D. L., and Walter, P., 1990, Reconstitution of protein translocation activity from partially solubilized microsomal vesicles, J. Biol. Chem. 265:4048–4053.

    PubMed  CAS  Google Scholar 

  • Zimmermann, R., and Meyer, D. I., 1986, 1986: A year of new insights into how proteins cross membranes, Trends Biochem. Sci. 11:512–515.

    Article  CAS  Google Scholar 

  • Zimmermann, R., and Mollay, C., 1986, Import of honeybee prepromelittin into the endoplasmic reticulum. Requirements for membrane insertion, processing and sequestration, J. Biol. Chem. 261:12889–12895.

    PubMed  CAS  Google Scholar 

  • Zimmermann, R., Sagstetter, M., Lewis, M. J., and Pelham, H. R. B., 1988, Seventy kilodalton heat shock proteins and an additional component from reticulocyte lysate stimulate import of M13 procoat protein into microsomes, EMBO J. 7:2875–2880.

    PubMed  CAS  Google Scholar 

  • Zimmermann, R., Sagstetter, M., and Schlenstedt, G., 1990, Ribonucleoparticle-independent import of proteins into mammalian microsomes involves a membrane protein which is sensitive to chemical alkylation, Biochimie 72:95–101.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, R., Zimmermann, M., Mayinger, P., and Klappa, P., 1991, Photoaffinity labeling of dog pancreas microsomes with 8-azido-ATP inhibits association of nascent preprolactin with the signal sequence receptor complex, FEBS Lett. 286:95–99.

    Article  PubMed  CAS  Google Scholar 

  • Zopf, D., Bernstein, H. D., Johnson, A. E., and Walter, P., 1990, The methionine-rich domain of the 54 kd protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence, EMBO J. 9:4511–4517.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Klappa, P., Zimmermann, M., Dierks, T., Zimmermann, R. (1993). Components and Mechanisms Involved in Transport of Proteins into the Endoplasmic Reticulum. In: Borgese, N., Harris, J.R. (eds) Endoplasmic Reticulum. Subcellular Biochemistry, vol 21. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2912-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2912-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6263-0

  • Online ISBN: 978-1-4615-2912-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics