Skip to main content

NADH-Cytochrome b5 Reductase and Cytochrome b5 the Problem of Posttranslational Targeting to the Endoplasmic Reticulum

  • Chapter
Endoplasmic Reticulum

Part of the book series: Subcellular Biochemistry ((SCBI,volume 21))

Abstract

A large number of endoplasmic reticulum (ER) enzymes, many of which are involved in the metabolism of lipids and drugs, have a cytosolically exposed active site and only a small lumenal domain (or possibly no lumenal amino acid residues at all) so that large portions of their polypeptide chain must not be translocated across the ER membrane. The biosynthesis of this class of proteins, their mechanism of targeting to the ER and of correct insertion into the phospholipid bilayer, represents an important aspect of ER biogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, D. J., Mostov, K. E., and Blobel, G., 1983, Mechanisms of integration of de novo synthesized Polypeptides into membranes: Signal recognition particle is required for integration into microsomal membranes of calcium ATPase and of lens MP 26 but not of cytochrome b5, Proc. Natl. Acad. Sci. USA 80:7249–7253.

    PubMed  CAS  Google Scholar 

  • Andrews, D. W., Lauffer, L., Walter, P., and Lingappa, V. R., 1989, Evidence for a two-step mechanism involved in assembly of functional signal recognition particle receptor, J. Cell Biol. 108:797–810.

    PubMed  CAS  Google Scholar 

  • Aoyama, T., Nagata, K., Yamazoe, Y., Kato, R., Matsunaga, E., Gelboin, H. V., and Gonzales, G. J., 1990, Cytochrome b5 potentiation of cytochrome P-450 catalytic activity demonstrated by a vaccinia virus-mediated in situ reconstitution system, Proc. Natl. Acad. Sci. USA 87:5425–5429.

    PubMed  CAS  Google Scholar 

  • Arinc, E., Rzepecki, L. M., and Strittmatter, P., 1987, Topography of the C-terminus of cytochrome b5 tightly bound to dimyristoylphosphatidylcholine vesicles, J. Biol. Chem. 262:15563–15567.

    PubMed  CAS  Google Scholar 

  • Bar-Nun, S., Kreibich, G., Adesnik, M., Alterman, L., Negishi, M., and Sabatini, D. D., 1980, Synthesis and insertion of cytochrome P-450 into endoplasmic reticulum membranes, Proc. Natl. Acad. Sci. USA 77:965–969.

    PubMed  CAS  Google Scholar 

  • Benazko, P., Brenn, S., Pfeil, W., and Rapoport, T. A., 1982, Different modes of interaction of the signal sequence of carp preproinsulin and of the insertion sequence of rabbit cytochrome b5, Eur. J. Biochem. 123:121–126.

    Google Scholar 

  • Beyers, A. D., Spruyt, L. L., and Williams, A. F., 1992, Molecular associations between the T-lymphocyte antigen receptor complex and the surface antigens CD2, CD4, or CD8 and CD5, Proc. Natl. Acad. Sci. USA 89:2945–2949.

    PubMed  CAS  Google Scholar 

  • Borgese, N., and Gaetani, S., 1980, Site of synthesis of rat liver NADH-cytochrome b5 reductase, an integral membrane protein, FEBS Lett. 112:216–220.

    PubMed  CAS  Google Scholar 

  • Borgese, N., and Gaetani, S., 1983, In vitro synthesis and posttranslational insertion into microsomes of the integral membrane protein, NADH-cytochrome b5 oxidoreductase, EMBO J. 2:1263–1269.

    PubMed  CAS  Google Scholar 

  • Borgese, N., and Longhi, R., 1990, Both the outer mitochondrial membrane and the microsomal forms of cytochrome b5 reductase contain covalently bound myristic acid. Quantitative analysis on the polyvinylidene difluoride-immobilized proteins, Biochem. J. 266:341–347.

    PubMed  CAS  Google Scholar 

  • Borgese, N., and Meldolesi, J., 1976, Immunological similarity of the NADH-cytochrome c electron transport system in microsomes, Golgi complex, and mitochondrial outer membranes of rat liver cells, FEBS Lett. 63:231–234.

    PubMed  CAS  Google Scholar 

  • Borgese, N., and Pietrini, G., 1986, Distribution of the integral membrane protein NADH-cytochrome b5 reductase in rat liver cells, studied with a quantitative radioimmunoblotting assay, Biochem. J. 239:393–403.

    PubMed  CAS  Google Scholar 

  • Borgese, N., Pietrini, G., and Meldolesi, J., 1980, Localization and biosynthesis of NADH-cytochrome b5 reductase, an integral membrane protein, in rat liver cells. III. Evidence for the independent insertion and turnover of the enzyme in various subcellular compartments, J. Cell Biol. 86:38–45.

    PubMed  CAS  Google Scholar 

  • Borgese, N., Macconi, D., Parola, L., and Pietrini, G., 1982, Rat erythrocyte NADH-cytochrome b5 reductase. Quantitation and comparison between the membrane-bound and soluble forms using all antibody against the rat liver enzyme, J. Biol. Chem. 257:13854–13861.

    PubMed  CAS  Google Scholar 

  • Bredt, D. S., Hwang, P. M., Glatt, C. E., Lowenstein, C., Reed, R. R., and Snyder, S. H., 1991, Gloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351:714–718.

    PubMed  CAS  Google Scholar 

  • Brown, D. A., and Simoni, R. D., 1984, Biogenesis of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, an integral glycoprotein of the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 81:1674–1678.

    PubMed  CAS  Google Scholar 

  • Campbell, W. H., and Kinghorn, J. R., 1990, Functional domains of assimilatory nitrate reductases and nitrite reductases, Trends Biochem. Sci. 15:315–319.

    PubMed  CAS  Google Scholar 

  • Chavrier, P., Gorvel, J.-P., Stelzer, R., Simons, K., Gruenberg, J., and Zerial, M., 1991, Hypervariable C-terminal domain of rab proteins acts as a targeting signal, Nature 353:769–772.

    PubMed  CAS  Google Scholar 

  • Chester, D. W., Skita, V., Young, H. S., Mavromoustakos, T., and Strittmatter, P., 1992, Bilayer structure and physical dynamics of the cytochrome b5 dimyristoylphosphatidylcholine interactions, Biophys. J. 61:1224–1243.

    PubMed  CAS  Google Scholar 

  • Choury, D., Leroux, A., and Kaplan, J.-C., 1981, Membrane-bound cytochrome b5 reductase (MetHb reductase) in human erythrocytes. Study in normal and methemoglobinemic patients, J. Clin. Invest. 67:149–155.

    PubMed  CAS  Google Scholar 

  • Chyn. T., Martonosi, A.N., Morimoto, T., and Sabatini, D.D., 1979, In vitro synthesis of the Ca2+ transport ATPase by ribosomes bound to sarcoplasmic reticulum membranes, Proc. Natl. Acad. Sci. USA 76:1241–1245.

    PubMed  CAS  Google Scholar 

  • Dailey. H. A., and Strittmatter. P., 1978, Structural and functional properties of the membrane binding segment of cytochrome b5, J. Biol. Chem. 253:8203–8209.

    PubMed  CAS  Google Scholar 

  • Dailey. H. A., and Strittmatter, P., 1979, Modification and identification of cytochrome b5 carboxyl groups involved in protein-protein interaction with cytochrome b5 reductase, J. Biol. Chem. 254:5388–5396.

    PubMed  CAS  Google Scholar 

  • Dailey. H. A., and Strittmatter, P., 1980, Characterization of the interaction of amphipathic cytochrome b5 with stearyl coenzyme A desaturase and NADPH-cytochrome P-450 reductase, J. Biol. Chem. 255:5184–5189.

    PubMed  CAS  Google Scholar 

  • Dailey, H. A., and Strittmatter, P., 1981a, The role of COOH-terminal anionic residues in binding cytochrome b5 to phospholipid vesicles and biological membranes, J. Biol. Chem. 256:1677–1680.

    PubMed  CAS  Google Scholar 

  • Dailey. H. A., and Strittmatter, P., 1981b, Orientation of the carboxyl and NH2 termini of the membrane-binding segment of cytochrome b5 on the same side of phospholipid bilayers, J. Biol. Chem. 256:3951–3955.

    PubMed  CAS  Google Scholar 

  • DArrigo, A., Manera, E., Longhi, R., and Borgese, N., 1992, The specific subcellular localization of 2 isoforms of cytochrome b5 suggests novel targeting pathways, J. Biol. Chem. 268:2802–2808.

    Google Scholar 

  • De Lemos-Chiarandini, C., Frey, A. B., Sabatini, D. D., and Kreibich, G., 1987, Determination of the membrane topology of the phenobarbital-inducible rat liver cytochrome P-450 isoenzyme PB-4 using site-specific antibodies, J. Cell Biol. 104:209–219.

    PubMed  Google Scholar 

  • Enoch, H. G., Fleming, P. J., and Strittmatter, P., 1977, Cytochrome b5 and cytochrome b5 reductase-phospholipid vesicles. Intervesicle protein transfer and orientation factors in proteinprotein interactions, J. Biol. Chem. 252:5656–5660.

    PubMed  CAS  Google Scholar 

  • Enoch. H. G., Fleming, P. J., and Strittmatter, P., 1979, The binding of cytochrome b5 to phospholipid vesicles and biological membranes. Effect of orientation on intermembrane transfer and digestion by carboxypeptidase Y, J. Biol. Chem. 254:6483–6488.

    PubMed  CAS  Google Scholar 

  • Fleming, P. J., and Strittmatter, P., 1978, The nonpolar peptide segment of cytochrome b5—binding to phospholipid vesicles and identification of the fluorescent tryptophanyl residue, J. Biol. Chem. 253:8198–8202.

    PubMed  CAS  Google Scholar 

  • Fowler, S., Remade, J., Trouet, A., Beaufay, H., Berthet, J., Wibo, M., and Hauser, P., 1976, Analytical study of microsomes and isolated subcellular membranes from rat liver. V. Immunological localization of cytochrome b5 by electron microscopy: Methodology and application to various subcellular fractions, J. Cell Biol. 71:535–550.

    PubMed  CAS  Google Scholar 

  • Frangioni, J. V., Beahm, P. H., Shifrin, V., Jost, C. A., and Neel, B. G., 1992, The nontransmembrane tyrosine Phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence, Cell 68:545–560.

    PubMed  CAS  Google Scholar 

  • Freire, E., Markello, T., Rigell, C., and Holloway, P. W., 1983, Calorimetric and fluorescence characterization of interactions between cytochrome b5 and phosphatidylcholine bilayers, Biochemistry 22:1675–1680.

    PubMed  CAS  Google Scholar 

  • Fukushima, H., Grinstead, G. F., and Gaylor, J. L., 1981, Total enzymic synthesis of cholesterol from lanosterol. Cytochrome b5-dependence of 4-methyl sterol oxidase, J. Biol. Chem. 256:822–826.

    Google Scholar 

  • Fukushima, L., Ito, A., Omura, T., and Sato, R., 1972, Occurrence of different types of cytochrome b5-like hemoprotein in liver mitochondria and their intramitochondrial localization, J. Biochem. 71:447–461.

    PubMed  CAS  Google Scholar 

  • George, S. K., Xu, Y.-H., Benson, L. A., Pratsch, L., Peters, R., and Ihler, G. M., 1991, Cytochrome b5 and a recombinant protein containing the cytochrome b5 hydrophobic domain spontaneously associate with the plasma membranes of cells, Biochim. Biophys. Acta 1066:131–143.

    PubMed  CAS  Google Scholar 

  • Giordano, S. J., and Steggles, A. W., 1991, The human liver and reticulocyte cytochrome b5 mRNAs are products from a single gene, Biochem. Biophys. Res. Commun. 178:38–44.

    PubMed  CAS  Google Scholar 

  • Gogol, E. P., and Engelman, D. M., 1984, Neutron scattering shows that cytochrome b5 penetrates deeply into the lipid bilayer, Biophys. J. 46:491–495.

    PubMed  CAS  Google Scholar 

  • Gonzales, F. J., and Kasper, C. B., 1980, Phenobarbital induction of NADPH-cytochrome c (P-450) oxidoreductase messenger ribonucleic acid, Biochemistry 19:1790–1796.

    Google Scholar 

  • Gordon, J., Duronio, R. J., Rudnick, D. A., Adams, S. P., and Gokel, G. W., 1991, Protein N-myristoylation, J. Biol. Chem. 266:8647–8650.

    PubMed  CAS  Google Scholar 

  • Gorvel, J.-P., Chavrier, P., Zerial, M., and Gruenberg, J., 1991, rab5 controls early endosome fusion in vitro, Cell 64:915–925.

    CAS  Google Scholar 

  • Guiard, B., and Lederer, F., 1979, The “cytochrome b5 fold”: Structure of a novel protein superfamily, J. Mol. Biol. 135:639–650.

    PubMed  CAS  Google Scholar 

  • Holloway, P. W., and Buchheit, C., 1990, Topography of the membrane-binding domain of cytochrome b5 in lipids by Fourier-transform infrared spectroscopy, Biochemistry 29:9631–9637.

    PubMed  CAS  Google Scholar 

  • Horton, A. A., and Barrett, M. C., 1975, The subcellular localization of aldehyde dehydrogenase in rat liver, Arch. Biochem. Biophys. 167:426–436.

    PubMed  CAS  Google Scholar 

  • Hultquist, D. E., and Passon, P. G., 1971, Catalysis of methemoglobin reduction by erythrocyte cytochrome b5 and cytochrome b5 reductase, Nature 229:252–254.

    CAS  Google Scholar 

  • Hyde, G. E., Crawford, N. M., and Campbell, W. H., 1991, The sequence of squash NADH:nitrate reductase and its relationship to the sequences of other flavoprotein oxidoreductases. A family of flavoprotein pyridine nucleotide cytochrome reductases, J. Biol. Chem. 266:23542–23547.

    PubMed  CAS  Google Scholar 

  • Ishizawa, S., Yoshida, T., and Kikuchi, G., 1983, Induction of heme oxygenase in rat liver. Increase of the specific mRNA by treatment with various chemicals and immunological identity of the enzymes in various tissues as well as the induced enzymes, J. Biol. Chem. 258:4220–4225.

    PubMed  CAS  Google Scholar 

  • Ito, A., 1980a, Cytochrome b5-like hemoprotein of outer mitochondrial membrane; OM cytochrome b. I. Purification of OM cytochrome b from rat liver mitochondria and comparison of its molecular properties with those of cytochrome b5, J. Biochem. 87:63–71.

    PubMed  CAS  Google Scholar 

  • Ito, A., 1980b, Cytochrome b5-like hemoprotein of outer mitochondrial membrane; OM cytochrome b. II. Contribution of OM cytochrome b to rotenone-insensitive NADH-cytochrome c reductase activity, J. Biochem. 87:73–80.

    PubMed  CAS  Google Scholar 

  • Ito, A., Hajashi, S. T., and Yoshida, T., 1981, Participation of a cytochrome b5-like hemoprotein of outer mitochondrial membrane (OM-cytochrome b) in NADH-semidehydroascorbic acid reductase activity of rat liver, Biochem. Biophys. Res. Commun. 101:591–598.

    PubMed  CAS  Google Scholar 

  • Karplus, P. A., Daniels, M. J., and Herriott, J. R., 1991, Atomic structure of ferredoxin-NADP+ reductase: Prototype for a structurally novel flavoenzyme family, Science 251:60–66.

    PubMed  CAS  Google Scholar 

  • Kelleher, D. J., Kreibich, G., and Gilmore, R., 1992, Oligosaccharyltransferase activity is associated with a protein complex composed of ribophorins I and II and a 48 kDa protein, Cell 69:55–65.

    PubMed  CAS  Google Scholar 

  • Kensil, C. R., and Strittmatter, P., 1986, Binding and fluorescence properties of the membrane domain of NADH-cytochrome b5 reductase—Determination of the depth of trp-16 in the bilayer, J. Biol. Chem. 261:7316–7321.

    PubMed  CAS  Google Scholar 

  • Kimura, S., Abe, K., and Sugita, Y., 1984, Differences in C-terminal amino acid sequences between erythrocyte and liver cytochrome b5 isolated from pig and human, FEBS Lett. 169:143–146.

    PubMed  CAS  Google Scholar 

  • Klappa, P., Mayinger, P., Pipkorn, R., Zimmermann, M., and Zimmermann, R., 1991, A microsomal protein is involved in ATP-dependent transport of presecretory proteins into mammalian microsomes, EMBO J. 10:2795–2803.

    PubMed  CAS  Google Scholar 

  • Kozak, M., 1991, An analysis of vertebrate mRNA sequences: Intimations of translational control, J. Cell Biol. 115:887–904.

    PubMed  CAS  Google Scholar 

  • Kuchler, K., Daum, G., and Paltauf, F., 1986, Subcellular and submitochondrial localization of phospholipid-synthesizing enzymes in Saccharomyces cerevisiae, J. Bacteriol. 165:901–910.

    PubMed  CAS  Google Scholar 

  • Kuwahara, S., Okaka, Y., and Omura, T., 1978, Evidence for molecular identity of microsomal and mitochondrial NADH-cytochrome b5 reductases of rat liver, J. Biochem. 83:1046–1049.

    Google Scholar 

  • Lederer, G., Ghrir, R., Guiard, B., Cortial, S., and Ito, A., 1983, Two homologous cytochrome b5 in a single cell, Eur. J. Biochem. 132:95–102.

    PubMed  CAS  Google Scholar 

  • Lee, T.-C., Baker, R. C., Stephens, N., and Snyder, R., 1977, Evidence for participation of cytochrome b5 in microsomal delta-6 desaturation of fatty acids, Biochim. Biophys. Acta 489:25–31.

    PubMed  CAS  Google Scholar 

  • Liscum, A., Finer-Moore, J., Stroud, R. M., Luskey, K. L., Brown, M. S., and Goldstein, J. L., 1985, Domain structure of 3-hydroxy-3-methylglutaryl coenzyme A reductase, a glycoprotein of the endoplasmic reticulum, J. Biol. Chem. 260:522–530.

    PubMed  CAS  Google Scholar 

  • Mathews, F. S., Levine, M., and Argos, P., 1972, Three-dimensional Fourier synthesis of calf liver cytochrome b5 at 2.8 Å resolution, J. Mol. Biol. 64:449–464.

    PubMed  CAS  Google Scholar 

  • Meldolesi, J., Corte, G., Pietrini, G., and Borgese, N., 1980, Localization and biosynthesis of NADH-cytochrome b5 reductase, an integral membrane protein, in rat liver cells. II. Evidence that a single enzyme accounts for the activity in its various subcellular locations, J. Cell Biol. 85:231–237.

    Google Scholar 

  • Meyer, D. I., Louvard, D., and Dobberstein, B., 1982, Characterization of molecules involved in protein translocation using a specific antibody, J. Cell Biol. 92:579–583.

    PubMed  CAS  Google Scholar 

  • Mitoma, J.-Y., and Ito, A., 1992, The carboxy-terminal 10 amino acid residues of cytochrome b5 are necessary for its targeting to the endoplasmic reticulum, EMBO J. 11:4197–4204.

    PubMed  CAS  Google Scholar 

  • Miyazawa, S., Hashimoto, T., and Yokota, S., 1985, Identity of long-chain acyl-coenzyme A synthetase of microsomes, mitochondria, and peroxisomes in rat liver, J. Biochem. 98:723–733.

    PubMed  CAS  Google Scholar 

  • Ohlsson, R. I., Lane, C. D., and Guengerich, F. P., 1981, Synthesis and insertion, both in vivo and in vitro, of rat-liver cytochrome P-450 and epoxide hydratase into Xenopus laevis membranes, Eur. J. Biochem. 115:367–373.

    PubMed  CAS  Google Scholar 

  • Okada, Y., Frey, A. B., Guenthner, T. M., Oesch, F., Sabatini, D. D., and Kreibich, G., 1982, Studies on the biosynthesis of microsomal membrane proteins. Site of synthesis and mode of insertion of cytochrome b5, cytochrome b5 reductase, cytochrome P-450 reductase, and epoxide hydrolase, Eur. J. Biochem. 122:393–402.

    PubMed  CAS  Google Scholar 

  • Okayasu, T., Ono, T., Shinojima, K., and Imai, Y., 1977, Involvement of cytochrome b5 in oxidative desaturation of linoleic acid to T-linolenic acid in rat liver microsomes, Lipids 12:267–271.

    PubMed  CAS  Google Scholar 

  • Olender, E. H., and Simoni, R. D., 1992, The intracellular targeting and membrane topology of 3-hydroxy-3-methylglutaryl-CoA reductase, J. Biol. Chem. 267:4223–4235.

    PubMed  CAS  Google Scholar 

  • Ozols, J., 1989, Structure of cytochrome b5 and its topology in microsomal membranes, Biochim. Biophys. Acta 997:121–130.

    PubMed  CAS  Google Scholar 

  • Ozols, J., Carr, S. A., and Strittmatter, P., 1984, Identification of the NH2-terminal blocking group of NADH-cytochrome b5 reductase as myristic acid and the complete amino acid sequence of the membrane-binding domain, J. Biol. Chem. 259:13349–13354.

    PubMed  CAS  Google Scholar 

  • Paltauf, F., Prough, R. A., Siler Masters, B. S., and Johnston, J. M., 1974, Evidence for the participation of cytochrome b5 in plasmalogen biosynthesis, J. Biol. Chem. 249:2661–2662.

    CAS  Google Scholar 

  • Parsons, D. F., Williams, G. R., Thompson, W., Wilson, D., and Chance, B., 1968, Improvements in the procedure for purification of mitochondrial outer and inner membrane. Comparison of the outer membrane with smooth endoplasmic reticulum, in: Mitochondrial Structure and Compartmentation (E. Quagliarello, S. Papa, E. C. Slater, and J. M. Tager, eds.), pp. 29–70, Adriatica Editrice, Bari.

    Google Scholar 

  • Pfeffer, S. R., 1992, GTP-binding proteins in intracellular transport, Trends Cell Biol. 2:41–46.

    PubMed  CAS  Google Scholar 

  • Pietrini, G., Carrera, P., and Borgese, N., 1988, Two transcripts encode rat cytochrome b5 reductase, Proc. Natl. Acad. Sci. USA 85:7246–7250.

    PubMed  CAS  Google Scholar 

  • Pietrini, G., Aggujaro, D., Carrera, P., Malyzsko, J., Vitale, A., and Borgese, N., 1992. A single mRNA, transcribed from an alternative, erythroid-specific promoter, codes for 2 nonmyristylated forms of NADH-cytochrome b5 reductase, J. Cell Biol. 117:975–986.

    PubMed  CAS  Google Scholar 

  • Poengsen, J., and Ullrich, V., 1980, Transfer of cytochrome b5 and NADPH-cytochrome c reductase between membranes, Biochim. Biophys. Acta 596:248–263.

    Google Scholar 

  • Rachubinski, R. A., Verma, D. P. S., and Bergeron, J. J. M., 1980, Synthesis of rat liver microsomal cytochrome b5 by free polysomes, J. Cell Biol. 84:705–716.

    PubMed  CAS  Google Scholar 

  • Remacle, J., 1978, Binding of cytochrome b5 to membranes of isolated subcellular organelles from rat liver, J. Cell Biol. 79:291–313.

    PubMed  CAS  Google Scholar 

  • Robinson, E. C., and Tanford, C., 1975, The binding of deoxycholate, Triton X-100, sodium dodecylsulfate, and phosphatidylcholine vesicles to cytochrome b5, Biochemistry 14:369–378.

    PubMed  CAS  Google Scholar 

  • Rogers, M. J., and Strittmatter, P., 1974, Evidence for random distribution and translational movement of cytochrome b5 in endoplasmic reticulum, J. Biol. Chem. 249:895–900.

    PubMed  CAS  Google Scholar 

  • Rogers, P., and Strittmatter, P., 1975, The interaction of NADH-cytochrome b5 reductase and cytochrome b5 bound to egg lecithin liposomes, J. Biol. Chem. 250:5713–5718.

    PubMed  CAS  Google Scholar 

  • Roseman, M. A., Holloway, P., Calabro, M. A., and Thompson, T. E., 1977, Exchange of cytochrome b5 between phospholipid vesicles, J. Biol. Chem. 252:4842–4849.

    PubMed  CAS  Google Scholar 

  • Rosenfeld, M. G., Marcantonio, E. E., Hakimi, J., Ort, V. M., Atkinson, P. H., Sabatini, D. D., and Kreibich, G., 1984, Biosynthesis and processing of ribophorins in the endoplasmic reticulum, J. Cell Biol. 99:1076–1082.

    PubMed  CAS  Google Scholar 

  • Rudd, C. E., Trevillyans, J. M., Dasgupta, J. D., Wong, L. L., and Schlossman, S. F., 1988, The CD4 receptor is complexed in detergent lysates to a protein-tyrosine kinase (pp 58) from human T lymphocytes, Proc. Natl. Acad. Sci. USA 85:5190–5194.

    PubMed  CAS  Google Scholar 

  • Sakaguchi, M., Mihara, K., and Sato, R., 1984, Signal recognition particle is required for cotranslational insertion of cytochrome P-450 into microsomal membranes, Proc. Natl. Acad. Sci. USA 81:3361–3364.

    PubMed  CAS  Google Scholar 

  • Schafer, D. A., and Hultquist, D. E., 1983, Purification and structural studies of rabbit erythrocyte cytochrome b5, Biochem. Biophys. Res. Commun. 115:807–813.

    PubMed  CAS  Google Scholar 

  • Scott, E. M., 1960, The relation of diaphorase of human erythrocytes to inheritance of methemoglobinemia, J. Clin. Invest. 39:1176–1179.

    PubMed  CAS  Google Scholar 

  • Serafini, T., Orci, L., Amherdt, M., Brunner, M., Kahn, R. A., and Rothman, J. E., 1991, ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: A novel role for a GTP-binding protein, Cell 67:239–253.

    PubMed  CAS  Google Scholar 

  • Slaughter, S. R., Williams, C. H., Jr., and Hultquist, D. E., 1982, Demonstration that bovine erythrocyte cytochrome b5 is the hydrophilic segment of microsomal cytochrome b5, Biochim. Biophys. Acta 705:228–237.

    PubMed  CAS  Google Scholar 

  • Soellner, T., Griffiths, G., Pfaller, R., Pfanner, N., and Neupert, W., 1989, MOM 19, an import receptor for mitochondrial precursor proteins, Cell 59:1061–1070.

    Google Scholar 

  • Soellner, T., Pfaller, R., Griffiths, G., Pfanner, N., and Neupert, W., 1990, A mitochondrial import receptor for the ADP/ATP carrier, Cell 62:107–115.

    CAS  Google Scholar 

  • Sottocasa, G. L., Kuylenstierna, B., Ernster, L., and Bergstrand, A., 1967, An electron transport system associated with the outer membrane of liver mitochondria, J. Cell Biol. 32:415–438.

    PubMed  CAS  Google Scholar 

  • Spatz, L., and Strittmatter, P., 1973, A form of reduced nicotinamide adenine dinucleotidecytochrome b5 reductase containing both the catalytic site and an additional hydrophobic membrane-binding segment, J. Biol. Chem. 248:793–799.

    PubMed  CAS  Google Scholar 

  • Steger, H. F., Soellner, T., Kiebler, M., Dietmeier, K. A., Pfaller, R., Trülzsch, K. S., Tropschug, M., Neupert, W., and Phanner, N., 1990, Import of ADP/ATP carrier into mitochondria: Two receptors act in parallel, J. Cell Biol. 111:2353–2363.

    PubMed  CAS  Google Scholar 

  • Strittmatter, P., and Rogers, M. J., 1975, Apparent dependence of interactions between cytochrome b5 and cytochrome b5 reductase upon translational diffusion in dimyristoyl lecithin liposomes, Proc. Natl. Acad. Sci. USA 72:2658–2661.

    PubMed  CAS  Google Scholar 

  • Strittmatter, P., Rogers, M. J., and Spatz, L., 1972, The binding of cytochrome b5 to liver microsomes, J. Biol. Chem. 247:7188–7194.

    PubMed  CAS  Google Scholar 

  • Strittmatter, P., Spatz, L., Corcoran, D., Rogers, M. J., Setlow, B., and Redline, R., 1974, Purification and properties of rat liver microsomal stearyl-coenzyme A desaturase, Proc. Natl. Acad. Sci. USA 71:4565–4569.

    PubMed  CAS  Google Scholar 

  • Strittmatter, P., Machuga, E. T., and Roth, G. J., 1982, Reduced pyridine nucleotides and cytochrome b5 as electron donors for Prostaglandin synthetase reconstituted in dimyristyl phosphatidylcholine vesicles, J. Biol. Chem. 257:11883–11886.

    PubMed  CAS  Google Scholar 

  • Strittmatter, P., Kittler, J. M., Coghill, J. E., and Ozols, J., 1992, Characterization of lysyl residues of NADH-cytochrome b5 reductase implicated in charge-pairing with active-site carboxyl residues of cytochrome b5 by site-directed mutagenesis of an expression vector for the flavoprotein, J. Biol. Chem. 267:2519–2533.

    PubMed  CAS  Google Scholar 

  • Takagaki, Y., Radhakrishnan, R., Wirtz, K. W. A., and Khorana, H. G., 1983a, The membraneembedded segment of cytochrome b5 as studied by cross-linking with photoactivatable phospholipids I. The transferable form, J. Biol. Chem. 258:9128–9135.

    PubMed  CAS  Google Scholar 

  • Takagaki, Y., Radhakrishnan, R., Wirtz, K. W. A., and Khorana, H. G., 1983b, The membraneembedded segment of cytochrome b5 as studied by cross-linking with photoactivatable phospholipids II. The nontransferable form, J. Biol. Chem. 258:9136–9142.

    PubMed  CAS  Google Scholar 

  • Takagi, Y, Ito, A., and Omura, T., 1985, Biogenesis of microsomal aldehyde dehydrogenase in rat liver, J. Biochem. 98:1647–1652.

    PubMed  CAS  Google Scholar 

  • Tamburini, P. P., and Schenkman, J. B., 1987, Purification to homogeneity and enzymological characterization of a functional covalent complex composed of cytochromes P-450 isozyme 2 and b5 from rabbit liver, Proc. Natl. Acad. Sci. USA 84:11–15.

    PubMed  CAS  Google Scholar 

  • Tamburini, P. P., White, R. E., and Schenkman, J. B., 1985, Chemical characterization of proteinprotein interactions between cytochrome P-450 and cytochrome b5, J. Biol. Chem. 260:4007–4015.

    PubMed  CAS  Google Scholar 

  • Tennyson, J., and Holloway, P. W., 1986, Fluorescence studies of cytochrome b5 topography— Incorporation of cytochrome b5 into brominated phosphatidylcholine vesicles by deoxycholate, J. Biol. Chem. 261:14196–14200.

    PubMed  CAS  Google Scholar 

  • Thiede, M. A., and Strittmatter, P., 1985, The induction and characterization of rat liver stearyl-CoA desaturase mRNA, J. Biol. Chem. 260:14459–14463.

    PubMed  CAS  Google Scholar 

  • Tomatsu, S., Kobayashi, Y, Fukumaki, Y, Yubisui, Y, Orii, T., and Sakaki, Y, 1989, The organization and the complete nucleotide sequence of the human NADH-cytochrome b5 reductase gene, Gene 80:353–361.

    PubMed  CAS  Google Scholar 

  • Veillette, A., Bookman, M. A., Horak, E. M., and Bolen, J. B., 1988, The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck, Cell 55:301–308.

    PubMed  CAS  Google Scholar 

  • Vergeres, G., and Waskell, L., 1992, Expression of cytochrome b5 in yeast and characterization of mutants of the membrane-anchoring domain, J. Biol. Chem. 267:12583–12591.

    PubMed  CAS  Google Scholar 

  • Xia, Z.-X., and Mathews, F. S., 1990, Molecular structure of flavocytochrome b2 at 2.4 Å resolution, J. Mol. Biol. 212:837–863.

    PubMed  CAS  Google Scholar 

  • Yubisui, T., Miyata, T., Iwanaga, S., Tamura, M., and Takeshita, M., 1986, Complete amino acid sequence of NADH-cytochrome b5 reductase purified from human erythrocytes, J. Biochem. 99:407–422.

    PubMed  CAS  Google Scholar 

  • Yubisui, T., Naitoh, Y., Zenno, S., Tamura, M., Takeshita, M., and Sakaki, Y., 1987, Molecular cloning of cDNAs of human liver and placenta NADH-cytochrome b5 reductase, Proc. Natl. Acad. Sci. USA 84:3609–3613.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Borgese, N., D’Arrigo, A., De Silvestris, M., Pietrini, G. (1993). NADH-Cytochrome b5 Reductase and Cytochrome b5 the Problem of Posttranslational Targeting to the Endoplasmic Reticulum. In: Borgese, N., Harris, J.R. (eds) Endoplasmic Reticulum. Subcellular Biochemistry, vol 21. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2912-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2912-5_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6263-0

  • Online ISBN: 978-1-4615-2912-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics